forked from talha-10xE/MoonDreamMojo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm.mojo
869 lines (681 loc) · 38 KB
/
llm.mojo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
from max.engine import InputSpec, InferenceSession
from python import Python, PythonObject
from utils.index import Index
from time import now
from max.graph import Graph, TensorType, Type, ops, Symbol
from max import engine
from max.tensor import Tensor, TensorShape
from max.engine import Model
from algorithm import sum
from utils.numerics import inf
from algorithm import parallelize
from memory import memcpy, memcmp, memset_zero
from max.graph.checkpoint import save, TensorDict, load
alias num_attention_heads = 32
alias hidden_size = 2048
alias head_dim = hidden_size // num_attention_heads
alias min_len = 700
alias pi_sqrt = 0.7978845608028654
alias batch_size = 1
fn numpy_to_tensor(numpy_array: PythonObject) raises -> Tensor[DType.float32]:
var tensor_shape = numpy_array.shape
var tensor_rank = len(numpy_array.shape)
var shape_list: List[Int] = List[Int]()
for i in range(tensor_rank):
shape_list.append(tensor_shape[i].__int__())
var tensor = Tensor[DType.float32] (shape_list)
memcpy(tensor.unsafe_ptr(), numpy_array.__array_interface__['data'][0].unsafe_get_as_pointer[DType.float32](),
tensor.num_elements())
return tensor
fn tensor_to_numpy(tensor: Tensor[DType.float32]) raises -> PythonObject:
var np = Python.import_module("numpy")
var tensor_shape = tensor.shape()
var tensor_rank = tensor.rank()
var python_list = Python.evaluate("list()")
for i in range(tensor_rank):
_ = python_list.append(tensor_shape[i])
var numpy_array:PythonObject = np.zeros(python_list, dtype=np.float32)
memcpy(numpy_array.__array_interface__['data'][0].unsafe_get_as_pointer[DType.float32](), tensor.unsafe_ptr(),
tensor.num_elements())
return numpy_array^
struct LayerNorm(CollectionElement):
var w: Tensor[DType.float32]
var b: Tensor[DType.float32]
fn __init__(inout self, gema: Tensor[DType.float32], beta: Tensor[DType.float32]):
self.w = gema
self.b = beta
fn __copyinit__(inout self, existing: Self):
self.w = existing.w
self.b = existing.b
fn __moveinit__(inout self, owned existing: Self):
self.w = existing.w^
self.b = existing.b^
fn forward(self, inputs_embeds: Tensor[DType.float32], mean: Model) raises -> Tensor[DType.float32]:
results = mean.execute("input0", inputs_embeds)
m = results.get[DType.float32]("output0")
variance = Tensor[DType.float32] (m.shape())
var epsilon:Float32 = 1e-5
for b in range(inputs_embeds.shape()[0]):
for i in range(inputs_embeds.shape()[1]):
var sum_squared_diff:Float32 = 0.0
for j in range(inputs_embeds.shape()[2]):
diff = inputs_embeds[Index(b, i, j)] - m[Index(b, i, 0)]
sum_squared_diff += diff ** 2
variance[Index(b, i, 0)] = sum_squared_diff / inputs_embeds.shape()[2]
x = Tensor[DType.float32] (inputs_embeds.shape())
y = Tensor[DType.float32] (inputs_embeds.shape())
for i in range(x.shape()[0]):
for j in range(x.shape()[1]):
for k in range(x.shape()[2]):
x[Index(i,j,k)] = inputs_embeds[Index(i,j,k)] - m[j]
y = variance + epsilon
var exponent = Float32(0.5)
for i in range(y.shape()[0]):
for j in range(y.shape()[1]):
for k in range(y.shape()[2]):
var base = Float32(y[Index(i,j,k)])
y[Index(i,j,k)] = pow(base, exponent)
z = Tensor[DType.float32] (inputs_embeds.shape())
for i in range(z.shape()[0]):
for j in range(z.shape()[1]):
for k in range(z.shape()[2]):
z[Index(i,j,k)] = y[Index(0,j,0)]
normalized_states = x/z
out = Tensor[DType.float32] (normalized_states.shape())
for i in range(out.shape()[0]):
for j in range(out.shape()[1]):
for k in range(out.shape()[2]):
out[Index(i,j,k)] = normalized_states[Index(i,j,k)] * self.w[k] + self.b[k]
return out
struct Linear(CollectionElement):
var w: Tensor[DType.float32]
var b: Tensor[DType.float32]
fn __init__(inout self, w: Tensor[DType.float32], b: Tensor[DType.float32]):
self.w = w
self.b = b
fn __copyinit__(inout self, existing: Self):
self.w = existing.w
self.b = existing.b
fn __moveinit__(inout self, owned existing: Self):
self.w = existing.w^
self.b = existing.b^
fn forward(self, inputs_mat: Tensor[DType.float32], transpose: Model, multiplication: Model, addition: Model)
raises -> Tensor[DType.float32]:
var results = transpose.execute("input0", self.w)
var W_T = results.get[DType.float32]("output0")
results = multiplication.execute("input0", inputs_mat, "input1", W_T)
var out = results.get[DType.float32]("output0")
results = addition.execute("input0", out, "input1", self.b)
lin_out = results.get[DType.float32]("output0")
return lin_out
struct QKVstates(CollectionElement):
var bsz: Int
var q_len: Int
var qkv: Tensor[DType.float32]
fn __init__(inout self, bsz: Int, q_len:Int, qkv: Tensor[DType.float32]):
self.bsz = bsz
self.q_len = q_len
self.qkv = qkv
fn __copyinit__(inout self, existing: Self):
self.bsz = existing.bsz
self.q_len = existing.q_len
self.qkv = existing.qkv
fn __moveinit__(inout self, owned existing: Self):
self.bsz = existing.bsz
self.q_len = existing.q_len
self.qkv = existing.qkv^
fn chunk_qkv(self, qkv: Tensor[DType.float32], inout q: Tensor[DType.float32], inout start_qkv: Int):
var start_q = 0
alias load_sizes = 2048
var q_num_elements = q.num_elements()
for i in range(0, q_num_elements, load_sizes):
q.store(start_q, qkv.load[width=load_sizes](start_qkv))
start_q += load_sizes
start_qkv += load_sizes*3
fn forward(self, transpose_12: Model) raises -> List[Tensor[DType.float32]]:
var t1:TensorShape = (self.qkv.shape()[0], self.qkv.shape()[1], int(self.qkv.shape()[2]/3))
var query_states = Tensor[DType.float32] (t1)
var key_states = Tensor[DType.float32] (t1)
var value_states = Tensor[DType.float32] (t1)
var start_qkv_q = 0
var start_qkv_k = 2048
var start_qkv_v = 4096
self.chunk_qkv(self.qkv, query_states, start_qkv_q)
self.chunk_qkv(self.qkv, key_states, start_qkv_k)
self.chunk_qkv(self.qkv, value_states, start_qkv_v)
reshaped_q = query_states.reshape((self.bsz, self.q_len, num_attention_heads, head_dim))
results = transpose_12.execute("input0", reshaped_q)
query_states = results.get[DType.float32]("output0")
reshaped_k = key_states.reshape((self.bsz, self.q_len, num_attention_heads, head_dim))
results = transpose_12.execute("input0", reshaped_k)
key_states = results.get[DType.float32]("output0")
reshaped_v = value_states.reshape((self.bsz, self.q_len, num_attention_heads, head_dim))
results = transpose_12.execute("input0", reshaped_v)
value_states = results.get[DType.float32]("output0")
out = List[Tensor[DType.float32]] ()
out.append(query_states)
out.append(key_states)
out.append(value_states)
return out
struct RotPass(CollectionElement):
var query_states: Tensor[DType.float32]
var key_states: Tensor[DType.float32]
fn __init__(inout self, query_states: Tensor[DType.float32], key_states: Tensor[DType.float32]):
self.query_states = query_states
self.key_states = key_states
fn __copyinit__(inout self, existing: Self):
self.query_states = existing.query_states
self.key_states = existing.key_states
fn __moveinit__(inout self, owned existing: Self):
self.query_states = existing.query_states^
self.key_states = existing.key_states^
fn forward(self) raises -> List[Tensor[DType.float32]]:
query_rot = Tensor[DType.float32] (self.query_states.shape()[0], self.query_states.shape()[1],
self.query_states.shape()[2], num_attention_heads)
for i in range(query_rot.shape()[0]):
for j in range(query_rot.shape()[1]):
for k in range(query_rot.shape()[2]):
for l in range(query_rot.shape()[3]):
query_rot[Index(i,j,k,l)] = self.query_states[Index(i,j,k,l)]
query_pass = Tensor[DType.float32] (self.query_states.shape()[0], self.query_states.shape()[1],
self.query_states.shape()[2], num_attention_heads)
for i in range(query_pass.shape()[0]):
for j in range(query_pass.shape()[1]):
for k in range(query_pass.shape()[2]):
for l in range(query_pass.shape()[3]):
query_pass[Index(i,j,k,l)] = self.query_states[Index(i,j,k,l+num_attention_heads)]
key_rot = Tensor[DType.float32] (self.key_states.shape()[0], self.key_states.shape()[1],
self.key_states.shape()[2], num_attention_heads)
for i in range(key_rot.shape()[0]):
for j in range(key_rot.shape()[1]):
for k in range(key_rot.shape()[2]):
for l in range(key_rot.shape()[3]):
key_rot[Index(i,j,k,l)] = self.key_states[Index(i,j,k,l)]
key_pass = Tensor[DType.float32] (self.key_states.shape()[0], self.key_states.shape()[1],
self.key_states.shape()[2], num_attention_heads)
for i in range(key_pass.shape()[0]):
for j in range(key_pass.shape()[1]):
for k in range(key_pass.shape()[2]):
for l in range(key_pass.shape()[3]):
key_pass[Index(i,j,k,l)] = self.key_states[Index(i,j,k,l+num_attention_heads)]
out = List[Tensor[DType.float32]] ()
out.append(query_rot)
out.append(query_pass)
out.append(key_rot)
out.append(key_pass)
return out
struct RotPosEmb(CollectionElement):
var cos: Tensor[DType.float32]
var sin: Tensor[DType.float32]
var pos_ids: Tensor[DType.float32]
fn __init__(inout self, cos: Tensor[DType.float32], sin: Tensor[DType.float32], pos_ids: Tensor[DType.float32]):
self.cos = cos
self.sin = sin
self.pos_ids = pos_ids
fn __copyinit__(inout self, existing: Self):
self.cos = existing.cos
self.sin = existing.sin
self.pos_ids = existing.pos_ids
fn __moveinit__(inout self, owned existing: Self):
self.cos = existing.cos^
self.sin = existing.sin^
self.pos_ids = existing.pos_ids^
fn forward(self, q:Tensor[DType.float32], k:Tensor[DType.float32]) raises ->List[Tensor[DType.float32]]:
new_cos = Tensor[DType.float32] (self.pos_ids.shape()[0], self.pos_ids.shape()[1], self.cos.shape()[1])
new_sin = Tensor[DType.float32] (self.pos_ids.shape()[0], self.pos_ids.shape()[1], self.cos.shape()[1])
for i in range(new_cos.shape()[0]):
for j in range(new_cos.shape()[1]):
pos_id = self.pos_ids[i, j]
for k in range(new_cos.shape()[2]):
new_cos[Index(i,j,k)] = self.cos[Index(pos_id, k)]
new_sin[Index(i,j,k)] = self.sin[Index(pos_id, k)]
new_cos = new_cos.reshape((1,self.pos_ids.shape()[0], self.pos_ids.shape()[1], self.cos.shape()[1]))
new_sin = new_sin.reshape((1,self.pos_ids.shape()[0], self.pos_ids.shape()[1], self.cos.shape()[1]))
rotate_half_q_x1 = Tensor[DType.float32] (q.shape()[0], q.shape()[1], q.shape()[2], int(q.shape()[3]//2))
rotate_half_q_x2 = Tensor[DType.float32] (q.shape()[0], q.shape()[1], q.shape()[2], int(q.shape()[3]//2))
rotate_half_k_x1 = Tensor[DType.float32] (k.shape()[0], k.shape()[1], k.shape()[2], int(k.shape()[3]//2))
rotate_half_k_x2 = Tensor[DType.float32] (k.shape()[0], k.shape()[1], k.shape()[2], int(k.shape()[3]//2))
for b in range(rotate_half_q_x1.shape()[0]):
for h in range(rotate_half_q_x1.shape()[1]):
for i in range(rotate_half_q_x1.shape()[2]):
for j in range(rotate_half_q_x1.shape()[3]):
# First half remains the same
rotate_half_q_x1[Index(b, h, i, j)] = q[Index(b, h, i, j)]
rotate_half_k_x1[Index(b, h, i, j)] = k[Index(b, h, i, j)]
# Second half is negated and swapped
rotate_half_q_x2[Index(b, h, i, j)] = -1 * q[Index(b, h, i, j + 16)]
rotate_half_k_x2[Index(b, h, i, j)] = -1 * k[Index(b, h, i, j + 16)]
rotate_half_q_out = Tensor[DType.float32] (rotate_half_q_x1.shape()[0],rotate_half_q_x1.shape()[1],
rotate_half_q_x1.shape()[2], rotate_half_q_x1.shape()[3] + rotate_half_q_x2.shape()[3])
rotate_half_k_out = Tensor[DType.float32] (rotate_half_k_x1.shape()[0],rotate_half_k_x1.shape()[1],
rotate_half_k_x1.shape()[2], rotate_half_k_x1.shape()[3] + rotate_half_k_x2.shape()[3])
for b in range(rotate_half_q_x1.shape()[0]):
for h in range(rotate_half_q_x1.shape()[1]):
for i in range(rotate_half_q_x1.shape()[2]):
for j in range(rotate_half_q_x1.shape()[3]):
# First 16 elements: negated -x2
rotate_half_q_out[Index(b, h, i, j)] = rotate_half_q_x2[Index(b, h, i, j)]
rotate_half_k_out[Index(b, h, i, j)] = rotate_half_k_x2[Index(b, h, i, j)]
# Next 16 elements: x1
rotate_half_q_out[Index(b, h, i, j + rotate_half_q_x1.shape()[3])] = rotate_half_q_x1[Index(b, h, i, j)]
rotate_half_k_out[Index(b, h, i, j + rotate_half_k_x1.shape()[3])] = rotate_half_k_x1[Index(b, h, i, j)]
new_cos_2 = Tensor[DType.float32] (q.shape())
new_sin_2 = Tensor[DType.float32] (q.shape())
for i in range(new_cos_2.shape()[0]):
for j in range(new_cos_2.shape()[1]):
for k in range(new_cos_2.shape()[2]):
for l in range(new_cos_2.shape()[3]):
new_cos_2[Index(i,j,k,l)] = new_cos[Index(0,0,k,l)]
new_sin_2[Index(i,j,k,l)] = new_sin[Index(0,0,k,l)]
q_embed = q*new_cos_2 + (rotate_half_q_out* new_sin_2)
k_embed = (k * new_cos_2) + (rotate_half_k_out * new_sin_2)
embs = List[Tensor[DType.float32]] ()
embs.append(q_embed)
embs.append(k_embed)
return embs
fn chunk_qkv(qkv: Tensor[DType.float32], inout q: Tensor[DType.float32], inout start_qkv: Int):
var start_q = 0
alias load_sizes = 2048
var q_num_elements = q.num_elements()
for i in range(0, q_num_elements, load_sizes):
q.store(start_q, qkv.load[width=load_sizes](start_qkv))
start_q += load_sizes
start_qkv += load_sizes*3
fn apply_rotary_pos_emb(q:Tensor[DType.float32], k:Tensor[DType.float32], cos:Tensor[DType.float32],
sin:Tensor[DType.float32], position_ids:Tensor[DType.float32]) raises ->List[Tensor[DType.float32]]:
new_cos = Tensor[DType.float32] (position_ids.shape()[0], position_ids.shape()[1], cos.shape()[1])
new_sin = Tensor[DType.float32] (position_ids.shape()[0], position_ids.shape()[1], cos.shape()[1])
for i in range(new_cos.shape()[0]):
for j in range(new_cos.shape()[1]):
pos_id = position_ids[i, j]
for k in range(new_cos.shape()[2]):
new_cos[Index(i,j,k)] = cos[Index(pos_id, k)]
new_sin[Index(i,j,k)] = sin[Index(pos_id, k)]
new_cos = new_cos.reshape((1,position_ids.shape()[0], position_ids.shape()[1], cos.shape()[1]))
new_sin = new_sin.reshape((1,position_ids.shape()[0], position_ids.shape()[1], cos.shape()[1]))
rotate_half_q_x1 = Tensor[DType.float32] (q.shape()[0], q.shape()[1], q.shape()[2], int(q.shape()[3]//2))
rotate_half_q_x2 = Tensor[DType.float32] (q.shape()[0], q.shape()[1], q.shape()[2], int(q.shape()[3]//2))
rotate_half_k_x1 = Tensor[DType.float32] (k.shape()[0], k.shape()[1], k.shape()[2], int(k.shape()[3]//2))
rotate_half_k_x2 = Tensor[DType.float32] (k.shape()[0], k.shape()[1], k.shape()[2], int(k.shape()[3]//2))
for b in range(rotate_half_q_x1.shape()[0]):
for h in range(rotate_half_q_x1.shape()[1]):
for i in range(rotate_half_q_x1.shape()[2]):
for j in range(rotate_half_q_x1.shape()[3]):
# First half remains the same
rotate_half_q_x1[Index(b, h, i, j)] = q[Index(b, h, i, j)]
rotate_half_k_x1[Index(b, h, i, j)] = k[Index(b, h, i, j)]
# Second half is negated and swapped
rotate_half_q_x2[Index(b, h, i, j)] = -1 * q[Index(b, h, i, j + 16)]
rotate_half_k_x2[Index(b, h, i, j)] = -1 * k[Index(b, h, i, j + 16)]
rotate_half_q_out = Tensor[DType.float32] (rotate_half_q_x1.shape()[0],rotate_half_q_x1.shape()[1],
rotate_half_q_x1.shape()[2], rotate_half_q_x1.shape()[3] + rotate_half_q_x2.shape()[3])
rotate_half_k_out = Tensor[DType.float32] (rotate_half_k_x1.shape()[0],rotate_half_k_x1.shape()[1],
rotate_half_k_x1.shape()[2], rotate_half_k_x1.shape()[3] + rotate_half_k_x2.shape()[3])
for b in range(rotate_half_q_x1.shape()[0]):
for h in range(rotate_half_q_x1.shape()[1]):
for i in range(rotate_half_q_x1.shape()[2]):
for j in range(rotate_half_q_x1.shape()[3]):
# First 16 elements: negated -x2
rotate_half_q_out[Index(b, h, i, j)] = rotate_half_q_x2[Index(b, h, i, j)]
rotate_half_k_out[Index(b, h, i, j)] = rotate_half_k_x2[Index(b, h, i, j)]
# Next 16 elements: x1
rotate_half_q_out[Index(b, h, i, j + rotate_half_q_x1.shape()[3])] = rotate_half_q_x1[Index(b, h, i, j)]
rotate_half_k_out[Index(b, h, i, j + rotate_half_k_x1.shape()[3])] = rotate_half_k_x1[Index(b, h, i, j)]
new_cos = Tensor[DType.float32] (q.shape())
new_sin = Tensor[DType.float32] (q.shape())
for i in range(new_cos.shape()[0]):
for j in range(new_cos.shape()[1]):
for k in range(new_cos.shape()[2]):
for l in range(new_cos.shape()[3]):
new_cos[Index(i,j,k,l)] = cos[Index(k,l)]
new_sin[Index(i,j,k,l)] = sin[Index(k,l)]
q_embed = q*new_cos + (rotate_half_q_out* new_sin)
k_embed = (k * new_cos) + (rotate_half_k_out * new_sin)
embs = List[Tensor[DType.float32]] ()
embs.append(q_embed)
embs.append(k_embed)
return embs
fn scaled_dot_product_attention(query:Tensor[DType.float32], key:Tensor[DType.float32], value:Tensor[DType.float32],
transpose_21:Model, multiplication_4D:Model, addition_42:Model ,softmax:Model,
multiplication_4D_2:Model, is_causal:Bool = False) raises -> Tensor[DType.float32]:
var base = Float32(query.shape()[-1])
var exponent = Float32(0.5)
var scale_factor:Float32 = 1 / pow(base, exponent)
# Initialize attn_bias based on query and key dimensions
var L = query.shape()[-2] # Sequence length of query
var S = key.shape()[-2] # Sequence length of key
var attn_bias = Tensor[DType.float32]((L, S))
# Apply causal masking only if is_causal is True
if is_causal:
for i in range(L):
for j in range(S):
if j > i:
attn_bias.store(Index(i, j), -inf[DType.float32]())
# Transpose key and compute attention weights
var results = transpose_21.execute("input0", key)
var key_transpose = results.get[DType.float32]("output0")
results = multiplication_4D.execute("input0", query, "input1", key_transpose)
var atten_weights = results.get[DType.float32]("output0")
var attention_weights = atten_weights * scale_factor
# Apply the attention bias to the attention weights
results = addition_42.execute("input0", attention_weights, "input1", attn_bias)
attention_weights = results.get[DType.float32]("output0")
# Softmax operation over the last dimension of attention weights
var attn_weights = Tensor[DType.float32](attention_weights.shape())
for i in range(attn_weights.shape()[0]):
for j in range(attn_weights.shape()[1]):
for k in range(attn_weights.shape()[2]):
# Collect the entire last dimension (attention scores for each head for one sequence element)
var new_tens = Tensor[DType.float32](attn_weights.shape()[3]) # Head dimension (S)
# Copy each element from attention_weights into new_tens
for l in range(attn_weights.shape()[3]): # Head dimension
new_tens[l] = attention_weights[Index(i, j, k, l)]
# Perform softmax on the extracted last dimension
var results = softmax.execute("input0", new_tens)
var xd = results.get[DType.float32]("output0")
# Store the softmaxed values back into the attention weights
for l in range(attn_weights.shape()[3]):
attn_weights[Index(i, j, k, l)] = xd[l]
results = multiplication_4D_2.execute("input0", attn_weights, "input1", value)
var output = results.get[DType.float32]("output0")
return output
fn Gelu(x:Tensor[DType.float32], tanh:Model) raises -> Tensor[DType.float32]:
# print(0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0)))))
var p = x*x*x
var a = 0.044715 * p
var m = x+a
var m2 = pi_sqrt * m
var results = tanh.execute("input0", m2)
var tanh_out = results.get[DType.float32]("output0")
plus = 1 + tanh_out
result = 0.5*x*plus
return result
fn main() raises:
print("Compiling Graphs", end = " ")
var session = engine.InferenceSession()
var graph1 = Graph(in_types=List[Type](TensorType(DType.float32, "a","m")))
var transposed = ops.transpose(graph1[0],-1,-2)
graph1.output(transposed)
graph1.verify()
var transpose = session.load(graph1)
print(".", end = " ")
var graph2 = Graph(in_types=List[Type](TensorType(DType.float32, "a","m", "n"), TensorType(DType.float32, "n")))
var out2 = graph2[0] + graph2[1]
graph2.output(out2)
graph2.verify()
var addition = session.load(graph2)
var graph3 = Graph(in_types=List[Type](TensorType(DType.float32, "a","m", "n"), TensorType(DType.float32, "n","x")))
var out3 = graph3[0] @ graph3[1]
graph3.output(out3)
graph3.verify()
var multiplication = session.load(graph3)
print(".", end = " ")
var graph5 = Graph(in_types=List[Type](TensorType(DType.float32, 1, "b", "c")))
var hollo = ops.mean(graph5[0])
graph5.output(hollo)
graph5.verify()
var mean = session.load(graph5)
var graph6 = Graph(in_types=List[Type](TensorType(DType.float32, "a", "b", "c", "d")))
transposed = ops.transpose(graph6[0],1,2)
graph6.output(transposed)
graph6.verify()
var transpose_12 = session.load(graph6)
print(".", end = " ")
var graph7 = Graph(in_types=List[Type](TensorType(DType.float32, "a", "b", "c", "d")))
transposed = ops.transpose(graph7[0],-2,-1)
graph7.output(transposed)
graph7.verify()
var transpose_21 = session.load(graph7)
print(".", end = " ")
var graph8 = Graph(in_types=List[Type](TensorType(DType.float32, "a", "b", "c", "d"),
TensorType(DType.float32, "a", "b", "d", "e")))
var out8 = graph8[0] @ graph8[1]
graph8.output(out8)
graph8.verify()
var multiplication_4D = session.load(graph8)
print(".", end = " ")
var graph9 = Graph(in_types=List[Type](TensorType(DType.float32, "a","m", "n", "o"), TensorType(DType.float32, "n", "o")))
var out9 = graph9[0] + graph9[1]
graph9.output(out9)
graph9.verify()
var addition_42 = session.load(graph9)
print(".", end = " ")
var graph10 = Graph(in_types=List[Type](TensorType(DType.float32, "a")))
var softmaxed = ops.softmax(graph10[0])
graph10.output(softmaxed)
graph10.verify()
var softmax = session.load(graph10)
print(".", end = " ")
var graph11 = Graph(in_types=List[Type](TensorType(DType.float32, "a", "m", "n", "o"),
TensorType(DType.float32, "a", "m", "o", "x")))
var out11 = graph11[0] @ graph11[1]
graph11.output(out11)
graph11.verify()
var multiplication_4D_2 = session.load(graph11)
print(".", end = " ")
var graph12 = Graph(in_types=List[Type](TensorType(DType.float32, "a", "b", "c")))
var tanhed = ops.tanh(graph12[0])
graph12.output(tanhed)
graph12.verify()
var tanh = session.load(graph12)
print(".", end = " ")
###################################################################################################################
print()
print("Compiling LLM", end = " ")
var mypython = Python.import_module("helper")
var tensors = load("encoder_output.maxckpt")
# var weights = load("text_model.maxckpt")
var w:PythonObject = mypython.h7_state_dict()
var encoder_output = tensors.get[DType.float32]("x")
print(".", end = " ")
cos_cache = numpy_to_tensor(mypython.cos_sin("cos_cached"))
sin_cache = numpy_to_tensor(mypython.cos_sin("sin_cached"))
print(".", end = " ")
ln = List[LayerNorm] ()
qkv_lin = List[Linear] ()
outproj_lin = List[Linear] ()
fc1_lin = List[Linear] ()
fc2_lin = List[Linear] ()
for i in range(0,8,1):
ln_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.ln.weight'])
ln_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.ln.bias'])
ln.append(LayerNorm(ln_weight, ln_bias))
print(".", end = " ")
qkv_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.Wqkv.weight'])
qkv_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.Wqkv.bias'])
qkv_lin.append(Linear(qkv_weight, qkv_bias))
print(".", end = " ")
outproj_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.out_proj.weight'])
outproj_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.out_proj.bias'])
outproj_lin.append(Linear(outproj_weight, outproj_bias))
print(".", end = " ")
fc1_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc1.weight'])
fc1_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc1.bias'])
fc1_lin.append(Linear(fc1_weight, fc1_bias))
print(".", end = " ")
fc2_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc2.weight'])
fc2_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc2.bias'])
fc2_lin.append(Linear(fc2_weight, fc2_bias))
print(".", end = " ")
w = mypython.h8_state_dict()
for i in range(8,18,1):
ln_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.ln.weight'])
ln_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.ln.bias'])
ln.append(LayerNorm(ln_weight, ln_bias))
print(".", end = " ")
qkv_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.Wqkv.weight'])
qkv_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.Wqkv.bias'])
qkv_lin.append(Linear(qkv_weight, qkv_bias))
print(".", end = " ")
outproj_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.out_proj.weight'])
outproj_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.out_proj.bias'])
outproj_lin.append(Linear(outproj_weight, outproj_bias))
print(".", end = " ")
fc1_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc1.weight'])
fc1_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc1.bias'])
fc1_lin.append(Linear(fc1_weight, fc1_bias))
print(".", end = " ")
fc2_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc2.weight'])
fc2_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc2.bias'])
fc2_lin.append(Linear(fc2_weight, fc2_bias))
print(".", end = " ")
w = mypython.h18_state_dict()
for i in range(18,24,1):
ln_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.ln.weight'])
ln_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.ln.bias'])
ln.append(LayerNorm(ln_weight, ln_bias))
print(".", end = " ")
qkv_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.Wqkv.weight'])
qkv_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.Wqkv.bias'])
qkv_lin.append(Linear(qkv_weight, qkv_bias))
print(".", end = " ")
outproj_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.out_proj.weight'])
outproj_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mixer.out_proj.bias'])
outproj_lin.append(Linear(outproj_weight, outproj_bias))
print(".", end = " ")
fc1_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc1.weight'])
fc1_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc1.bias'])
fc1_lin.append(Linear(fc1_weight, fc1_bias))
print(".", end = " ")
fc2_weight = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc2.weight'])
fc2_bias = numpy_to_tensor(w['transformer.h.'+str(i)+'.mlp.fc2.bias'])
fc2_lin.append(Linear(fc2_weight, fc2_bias))
print(".", end = " ")
lm_head_ln_weight = numpy_to_tensor(w['lm_head.ln.weight'])
lm_head_ln_bias = numpy_to_tensor(w['lm_head.ln.bias'])
lm_head_lin_weight = numpy_to_tensor(w['lm_head.linear.weight'])
lm_head_lin_bias = numpy_to_tensor(w['lm_head.linear.bias'])
lm_head_ln = LayerNorm(lm_head_ln_weight, lm_head_ln_bias)
lm_head_lin = Linear(lm_head_lin_weight, lm_head_lin_bias)
emb_matrix = w['transformer.embd.wte.weight']
w.__del__()
while(1):
values = List[Int] ()
print()
print("Running the model")
py_builtins = Python.import_module("builtins")
holla = py_builtins.input("Enter you question: ")
var question = '\n\nQuestion: '+ str(holla) +' \n\nAnswer:'
print(question)
here = PythonObject()
var input_len = 0
var flag = True
var past_key_states = List[Tensor[DType.float32]] ()
var past_value_states = List[Tensor[DType.float32]] ()
words = 0
while(words <=128):
inputs_embeds = Tensor[DType.float32] ()
if words == 0:
inputs_embeds = numpy_to_tensor(mypython.text_emb(question, tensor_to_numpy(encoder_output), emb_matrix))
else:
inputs_embeds = numpy_to_tensor(mypython.embedding_function(here, emb_matrix))
input_to_layer = inputs_embeds
if words == 0:
input_len = input_to_layer.shape()[1]
position_ids = Tensor[DType.float32] (1,input_len)
count = 0
for i in range(position_ids.shape()[0]):
for j in range(position_ids.shape()[1]):
position_ids[Index(i,j)] = count
count +=1
flag = True
else:
position_ids = Tensor[DType.float32] (1,1)
position_ids[Index(0,0)] = input_len
input_len +=1
flag = False
for i in range(24):
residual = input_to_layer
var ln_out = ln[i].forward(input_to_layer, mean)
bsz = ln_out.shape()[0]
q_len = ln_out.shape()[1]
qkv = qkv_lin[i].forward(ln_out, transpose, multiplication, addition)
qkv_states = QKVstates(bsz, q_len, qkv)
qkv_states_list = qkv_states.forward(transpose_12)
query_states = qkv_states_list[0]
key_states = qkv_states_list[1]
value_states = qkv_states_list[2]
cos = Tensor[DType.float32] (input_len, num_attention_heads)
sin = Tensor[DType.float32] (input_len, num_attention_heads)
for i in range(cos.shape()[0]):
for j in range(cos.shape()[1]):
cos[Index(i,j)] = cos_cache[Index(i,j)]
sin[Index(i,j)] = sin_cache[Index(i,j)]
rot_pass = RotPass(query_states, key_states)
qk_rot_pass = rot_pass.forward()
query_rot = qk_rot_pass[0]
query_pass = qk_rot_pass[1]
key_rot = qk_rot_pass[2]
key_pass = qk_rot_pass[3]
rot_pos_emb = RotPosEmb(cos, sin, position_ids)
embs = rot_pos_emb.forward(query_rot, key_rot)
query_rot = embs[0]
key_rot = embs[1]
new_query_states = Tensor[DType.float32] (query_pass.shape()[0], query_pass.shape()[1], query_pass.shape()[2],
query_pass.shape()[3]+query_rot.shape()[3])
new_key_states = Tensor[DType.float32] (key_pass.shape()[0], key_pass.shape()[1], key_pass.shape()[2],
key_pass.shape()[3]+key_rot.shape()[3])
for i in range(query_rot.shape()[0]):
for j in range(query_rot.shape()[1]):
for k in range(query_rot.shape()[2]):
for l in range(query_rot.shape()[3]):
new_query_states[Index(i,j,k,l)] = query_rot[Index(i, j, k, l)]
new_query_states[Index(i,j,k,l+query_rot.shape()[3])] = query_pass[Index(i, j, k, l)]
new_key_states[Index(i,j,k,l)] = key_rot[Index(i, j, k, l)]
new_key_states[Index(i,j,k,l+key_rot.shape()[3])] = key_pass[Index(i, j, k, l)]
if words == 0:
past_key_states.append(new_key_states)
past_value_states.append(value_states)
elif words != 0:
new_tens_keys = Tensor[DType.float32] (past_key_states[i].shape()[0], past_key_states[i].shape()[1],
past_key_states[i].shape()[2] + new_key_states.shape()[2],
past_key_states[i].shape()[3])
new_tens_values = Tensor[DType.float32] (past_value_states[i].shape()[0], past_value_states[i].shape()[1],
past_value_states[i].shape()[2] + value_states.shape()[2],
past_value_states[i].shape()[3])
for w in range(new_tens_keys.shape()[0]):
for x in range(new_tens_keys.shape()[1]):
for y in range(new_tens_keys.shape()[2]):
for z in range(new_tens_keys.shape()[3]):
if y < past_key_states[i].shape()[2]:
new_tens_keys[Index(w, x, y, z)] = past_key_states[i][Index(w, x, y, z)]
new_tens_values[Index(w, x, y, z)] = past_value_states[i][Index(w, x, y, z)]
else:
new_tens_keys[Index(w, x, y, z)] = new_key_states[Index(w, x, 0, z)]
new_tens_values[Index(w, x, y, z)] = value_states[Index(w, x, 0, z)]
past_key_states[i] = new_tens_keys
past_value_states[i] = new_tens_values
new_key_states = new_tens_keys
value_states = new_tens_values
attn_output = scaled_dot_product_attention(new_query_states, new_key_states, value_states, transpose_21, multiplication_4D,
addition_42, softmax, multiplication_4D_2, flag)
results = transpose_12.execute("input0", attn_output)
var attn_output_t = results.get[DType.float32]("output0")
attn_output_r = attn_output_t.reshape((bsz, q_len, hidden_size))
attention_output = outproj_lin[i].forward(attn_output_r, transpose, multiplication, addition)
fc1_out = fc1_lin[i].forward(ln_out, transpose, multiplication, addition)
gelu_out = Gelu(fc1_out, tanh)
fc2_out = fc2_lin[i].forward(gelu_out, transpose, multiplication, addition)
hidden_states = attention_output + fc2_out + residual
input_to_layer = hidden_states
j_index = input_to_layer.shape()[1]
new = Tensor[DType.float32] (1,1,hidden_size)
for i in range(1):
for j in range(1):
for k in range(hidden_size):
new[Index(i,j,k)] = input_to_layer[Index(0,j_index-1,k)]
lm_ln = lm_head_ln.forward(new, mean)
lm_lin = lm_head_lin.forward(lm_ln, transpose, multiplication, addition)
here = mypython.argmax_index(tensor_to_numpy(lm_lin))
values.append(here[0][0])
if here[0][0] == 50256:
break
input_to_layer = lm_lin
words +=1
var np = Python.import_module("numpy")
var np_values = np.zeros((1, len(values)), np.int32)
for i in range(np_values.shape[0]):
for j in range(np_values.shape[1]):
np_values[i][j] = values[j]
output = mypython.decode(np_values)
print(output)