-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
60 lines (44 loc) · 2.33 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import hydra
from tqdm import tqdm
from minsu3d.evaluation.object_detection import evaluate_bbox_acc, get_gt_bbox
from minsu3d.evaluation.instance_segmentation import GeneralDatasetEvaluator, get_gt_instances
from minsu3d.util.io import read_gt_files_from_disk, read_pred_files_from_disk
@hydra.main(version_base=None, config_path="config", config_name="config")
def main(cfg):
split = cfg.model.inference.split
pred_file_path = os.path.join(cfg.exp_output_root_path, "inference", cfg.model.inference.split, "predictions", "instance")
if not os.path.exists(pred_file_path):
print("Error: prediction files do not exist.")
exit(-1)
print(f"==> start evaluating {split} set ...")
print("==> Evaluating instance segmentation ...")
inst_seg_evaluator = GeneralDatasetEvaluator(cfg.data.class_names, -1, cfg.data.ignore_classes)
all_pred_insts = []
all_gt_insts = []
all_gt_insts_bbox = []
data_map = {
"train": cfg.data.metadata.train_list,
"val": cfg.data.metadata.val_list,
"test": cfg.data.metadata.test_list
}
with open(data_map[split]) as f:
scene_names = [line.strip() for line in f]
for scan_id in tqdm(scene_names):
scan_path = os.path.join(cfg.data.dataset_path, split, f"{scan_id}.pth")
pred_path = os.path.join(pred_file_path, scan_id + ".txt")
# read ground truth files
gt_xyz, gt_sem_labels, gt_instance_ids = read_gt_files_from_disk(scan_path)
gt_instances = get_gt_instances(gt_sem_labels, gt_instance_ids, cfg.data.ignore_classes)
all_gt_insts.append(gt_instances)
# read prediction files
pred_instances = read_pred_files_from_disk(pred_path, gt_xyz, cfg.data.mapping_classes_ids, cfg.data.ignore_classes)
all_pred_insts.append(pred_instances)
# parse gt bounding boxes
gt_instances_bbox = get_gt_bbox(gt_xyz, gt_instance_ids, gt_sem_labels, -1, cfg.data.ignore_classes)
all_gt_insts_bbox.append(gt_instances_bbox)
inst_seg_eval_result = inst_seg_evaluator.evaluate(all_pred_insts, all_gt_insts, print_result=True)
obj_detect_eval_result = evaluate_bbox_acc(all_pred_insts, all_gt_insts_bbox, cfg.data.class_names,
cfg.data.ignore_classes, print_result=True)
if __name__ == "__main__":
main()