-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
45 lines (32 loc) · 1.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import hydra
import pytorch_lightning as pl
from minsu3d.callback import *
from importlib import import_module
from minsu3d.data.data_module import DataModule
from pytorch_lightning.callbacks import LearningRateMonitor
def init_callbacks(cfg):
checkpoint_monitor = hydra.utils.instantiate(cfg.model.checkpoint_monitor)
gpu_cache_clean_monitor = GPUCacheCleanCallback()
lr_monitor = LearningRateMonitor(logging_interval="epoch")
return [checkpoint_monitor, gpu_cache_clean_monitor, lr_monitor]
@hydra.main(version_base=None, config_path="config", config_name="config")
def main(cfg):
# fix the seed
pl.seed_everything(cfg.global_train_seed, workers=True)
output_path = os.path.join(cfg.exp_output_root_path, "training")
os.makedirs(output_path, exist_ok=True)
print("==> initializing data ...")
data_module = DataModule(cfg)
print("==> initializing logger ...")
logger = hydra.utils.instantiate(cfg.model.logger, save_dir=output_path)
print("==> initializing monitor ...")
callbacks = init_callbacks(cfg)
print("==> initializing trainer ...")
trainer = pl.Trainer(callbacks=callbacks, logger=logger, **cfg.model.trainer)
print("==> initializing model ...")
model = getattr(import_module("minsu3d.model"), cfg.model.network.module)(cfg)
print("==> start training ...")
trainer.fit(model=model, datamodule=data_module, ckpt_path=cfg.model.ckpt_path)
if __name__ == '__main__':
main()