from threading import Thread
import time
g_num = 100
def work1():
global g_num
for i in range(3):
g_num += 1
print("----in work1, g_num is %d---" % g_num)
def work2():
global g_num
print("----in work2, g_num is %d---" % g_num)
print("---线程创建之前g_num is %d---" % g_num)
if __name__ == '__main__':
t1 = Thread(target=work1)
t1.start()
# 延时一会,保证t1线程中的事情做完
time.sleep(1)
t2 = Thread(target=work2)
t2.start()
运行结果:
---线程创建之前g_num is 100---
----in work1, g_num is 103---
----in work2, g_num is 103---
可能会引起资源竞争
from threading import Thread
import time
def work1(nums):
nums.append(44)
print("----in work1---", nums)
def work2(nums):
# 延时一会,保证t1线程中的事情做完
time.sleep(1)
print("----in work2---", nums)
g_nums = [11, 22, 33]
t1 = Thread(target=work1, args=(g_nums,))
t1.start()
t2 = Thread(target=work2, args=(g_nums,))
t2.start()
运行结果:
----in work1--- [11, 22, 33, 44]
----in work2--- [11, 22, 33, 44]
注意:可能会引发资源竞争的问题
总结:
在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据
缺点就是,线程是对全局变量随意遂改可能造成多线程之间对全局变量的混乱(即线程非安全)
资源竞争问题
假设两个线程t1和t2都要对全局变量g_num(默认是0)进行加1运算,t1和t2都各对g_num加10次,g_num的最终的结果应该为20。
但是由于是多线程同时操作,有可能出现下面情况:
- 在g_num=0时,t1取得g_num=0。此时系统把t1调度为”sleeping”状态,把t2转换为”running”状态,t2也获得g_num=0
- 然后t2对得到的值进行加1并赋给g_num,使得g_num=1
- 然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给g_num。
- 这样导致虽然t1和t2都对g_num加1,但结果仍然是g_num=1
Demo01:
import threading
import time
g_num = 0
def work1(num):
global g_num
for i in range(num):
g_num += 1
print("----in work1, g_num is %d---" % g_num)
def work2(num):
global g_num
for i in range(num):
g_num += 1
print("----in work2, g_num is %d---" % g_num)
print("---线程创建之前g_num is %d---" % g_num)
t1 = threading.Thread(target=work1, args=(10,))
t1.start()
t2 = threading.Thread(target=work2, args=(10,))
t2.start()
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
运行结果:
---线程创建之前g_num is 0---
----in work1, g_num is 10---
----in work2, g_num is 20---
2个线程对同一个全局变量操作之后的最终结果是:20
数据量较小无法展示具体的效果,下列案例较好的展示出问题
demo02:
import threading
import time
g_num = 0
def work1(num):
global g_num
for i in range(num):
g_num += 1
print("----in work1, g_num is %d---" % g_num)
def work2(num):
global g_num
for i in range(num):
g_num += 1
print("----in work2, g_num is %d---" % g_num)
print("---线程创建之前g_num is %d---" % g_num)
t1 = threading.Thread(target=work1, args=(1000000,))
t1.start()
t2 = threading.Thread(target=work2, args=(1000000,))
t2.start()
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
运行结果:
---线程创建之前g_num is 0---
----in work1, g_num is 1348580---
----in work2, g_num is 1482666---
2个线程对同一个全局变量操作之后的最终结果是:1482666
结论:
如果多个线程同时对同一个全局变量操作,会出现资源竞争问题,从而数据结果会不正确