-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenv.py
885 lines (773 loc) · 41.7 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
######################################################################
# Environment build
# ---------------------------------------------------------------
# author by younghow
# email: [email protected]
# --------------------------------------------------------------
# env类对城市环境进行三维构建与模拟,利用立方体描述城市建筑,
# 同时用三维坐标点描述传感器。对环境进行的空间规模、风况、无人机集合、
# 传感器集合、建筑集合、经验池进行初始化设置,并载入DQN神经网络模型。
# env类成员函数能实现UAV行为决策、UAV决策经验学习、环境可视化、单时间步推演等功能。
# ----------------------------------------------------------------
# The env class constructs and simulates the urban environment in 3D,
# uses cubes to describe urban buildings, and uses 3D coordinate points
# to describe sensors. Initialize the environment's spatial scale, wind conditions,
# UAV collection, sensor collection, building collection, and experience pool,
# and load the DQN neural network model.
# The env class member function can implement UAV behavioral decision-making,
# UAV decision-making experience learning, environment visualization, and single-time-step deduction.
##############################################################################
import time
import numpy as np
import random
import math
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import torch
import torch.optim as optim
import random
from model import QNetwork
from AGENT import *
from torch.autograd import Variable
from replay_buffer import ReplayMemory, ReplayMemory_Per, Transition
use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
device = torch.device("cuda" if use_cuda else "cpu") # 使用GPU进行训练
n_replay = 2 ** 17 # 16384
class obstruction():
def __init__(self, x, y, z, l, w, h):
self.x = x # 障碍物最靠近原点角的x坐标
self.y = y # 障碍物最靠近原点角的y坐标
self.z = z # 障碍物最靠近原点角的z坐标
self.l = l # 障碍物长度
self.w = w # 障碍物宽度
self.h = h # 障碍物高度
class sn():
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
class Env(object):
def __init__(self, n_states, n_actions, LEARNING_RATE):
# self.PotentialField = 30 # 势场(靠近墙面、地面、障碍物则势能较低)
# self.action_space=spaces.Discrete(27) # 定义无人机动作空间(0-26),用三进制对动作进行编码 0:-1 1:0 2:+1
# self.observation_space=spaces.Box(shape=(self.len,self.width,self.h),dtype=np.uint8) # 定义观测空间(规划空间),能描述障碍物情况与风向
self.agents = [] # 智能体对象集合
self.obs = [] # 障碍物集合
self.target = [] # 目标点
self.n_agent = 1 # 训练环境中的智能体个数
# self.mean = False
# self.std = False
# self.v0=40 # 无人机可控风速
self.fig = plt.figure()
self.ax = self.fig.add_subplot(1, 1, 1, projection='3d')
plt.ion() # interactive mode on
# 神经网络参数
self.q_local = QNetwork(n_states, n_actions, hidden_dim=16).to(device) # 初始化Q网络
self.q_target = QNetwork(n_states, n_actions, hidden_dim=16).to(device) # 初始化目标Q网络
self.mse_loss = torch.nn.MSELoss() # 损失函数:均方误差
self.optim = optim.Adam(self.q_local.parameters(), lr=LEARNING_RATE) # 设置优化器,使用adam优化器
# self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optim, T_max=5e4) # 调整学习率
self.n_states = n_states # 状态空间数目
self.n_actions = n_actions # 动作集数目
# ReplayMemory: trajectory is saved here
self.replay_memory = ReplayMemory(n_replay) # 初始化经验池
# self.replay_memory = ReplayMemory_Per(n_replay) # 初始化优先经验池
def get_action(self, state, eps, check_eps=True):
"""Returns an action 返回行为值
Args:
state : 2-D tensor of shape (n, input_dim)
eps (float): eps-greedy for exploration eps贪心策略的概率
Returns: int: action index 动作索引
"""
global steps_done
sample = random.random()
if check_eps == False or sample > eps:
with torch.no_grad():
# state = (state - self.mean) / (self.std + 1e-5)
return self.q_local(Variable(state).type(FloatTensor)).data.max(1)[1].view(1, 1) # 根据Q值选择行为
else:
i = 0
while 1:
a = random.randrange(self.n_actions)
dx, dy, dz = [0, 0, 0]
if a == 0:
dx, dy, dz = [0, 0, 0]
elif a == 1:
dx, dy, dz = [1, 0, 0]
elif a == 2:
dx, dy, dz = [0, 1, 0]
elif a == 3:
dx, dy, dz = [0, 0, 1]
elif a == 4:
dx, dy, dz = [-1, 0, 0]
elif a == 5:
dx, dy, dz = [0, -1, 0]
elif a == 6:
dx, dy, dz = [0, 0, -1]
x, y, z = [int(state.reshape(-1).cpu().numpy()[0] + dx), int(state.reshape(-1).cpu().numpy()[1]+ dy), int(state.reshape(-1).cpu().numpy()[2] + dz)]
if not (x < 0 or x > self.len - 1 or y < 0 or y > self.width - 1 or z < 0 or z > self.h - 1):
if self.map[x, y, z] == 0 or self.map[x, y, z] == -1:
break
i += 1
if i >= 10:
break
return torch.tensor([[a]], device=device) # 随机选取动作
def learn(self, gamma, BATCH_SIZE):
"""Prepare minibatch and train them 准备训练
Args:
experiences (List[Transition]): batch of `Transition`
gamma (float): Discount rate of Q_target 折扣率
"""
# transitions_total = self.replay_memory.sample(len(self.replay_memory)) # 获取全部经验数据
# batch_total = Transition(*zip(*transitions_total))
# states_total = torch.cat(batch_total.state)
# self.mean = torch.mean(states_total, dim=0, keepdim=True)
# self.std = (torch.var(states_total, dim=0, keepdim=True)) ** 0.5
transitions = self.replay_memory.sample(BATCH_SIZE) # 获取批量经验数据
# idxs, transitions = self.replay_memory.sample(BATCH_SIZE) # 获取批量经验数据(优先)
batch = Transition(*zip(*transitions))
states = torch.cat(batch.state)
# states = (states - self.mean) / (self.std + 1e-5)
actions = torch.cat(batch.action)
rewards = torch.cat(batch.reward)
next_states = torch.cat(batch.next_state)
dones = torch.cat(batch.done)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to newtork q_local (current estimate)
Q_expected = self.q_local(states).gather(1, actions) # 获得Q估计值
# Q_targets_next = self.q_target(next_states).max(1)[0] # 计算Q目标值估计(DQN)
Q_targets_next = self.q_target(next_states).gather(1, self.q_local(next_states).max(1)[1].reshape(-1, 1)).reshape(-1) # 计算Q目标值估计(Double DQN)
# Compute the expected Q values
Q_targets = rewards + gamma * Q_targets_next * (1 - dones) # 更新Q目标值
# # 优先经验池相关参数更新
# td_errors = (Q_expected - Q_targets.unsqueeze(1)).detach().squeeze().tolist()
# self.replay_memory.update(idxs, td_errors) # update td error
# 训练Q网络
self.q_local.train(mode=True)
self.optim.zero_grad()
loss = self.mse_loss(Q_expected, Q_targets.unsqueeze(1).detach()) # 计算误差
# backpropagation of loss to NN
loss.backward()
self.optim.step()
# self.scheduler.step()
def soft_update(self, local_model, target_model, tau):
""" tau (float): interpolation parameter"""
# 更新Q网络与Q目标网络
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
def hard_update(self, local, target):
for target_param, param in zip(target.parameters(), local.parameters()):
target_param.data.copy_(param.data)
def render(self, flag=0):
# 绘制封闭立方体
# 参数
# x,y,z立方体中心坐标
# dx,dy,dz 立方体长宽高半长
# fig = plt.figure()
# 前3个参数用来调整各坐标轴的缩放比例
if flag == 1:
self.fig.gca().set_box_aspect((self.len, self.width, self.h))
self.ax.set(xlim3d=(0, self.len), xlabel='X')
self.ax.set(ylim3d=(0, self.width), ylabel='Y')
self.ax.set(zlim3d=(0, self.h), zlabel='Z')
# 第一次渲染,需要渲染障碍物
z = 0
# ax = self.fig.add_subplot(1, 1, 1, projection='3d')
for ob in self.obs:
# 绘画出所有建筑
x = ob.x
y = ob.y
z = ob.z
dx = ob.l
dy = ob.w
dz = ob.h
xx = np.linspace(x, x + dx, 2)
yy = np.linspace(y, y + dy, 2)
zz = np.linspace(z, z + dz, 2)
xx2, yy2 = np.meshgrid(xx, yy)
self.ax.plot_surface(xx2, yy2, np.full_like(xx2, z))
self.ax.plot_surface(xx2, yy2, np.full_like(xx2, z + dz))
yy2, zz2 = np.meshgrid(yy, zz)
self.ax.plot_surface(np.full_like(yy2, x), yy2, zz2)
self.ax.plot_surface(np.full_like(yy2, x + dx), yy2, zz2)
xx2, zz2 = np.meshgrid(xx, zz)
self.ax.plot_surface(xx2, np.full_like(yy2, y), zz2)
self.ax.plot_surface(xx2, np.full_like(yy2, y + dy), zz2)
for sn in self.target:
# 绘制目标坐标点
self.ax.scatter(sn.x, sn.y, sn.z, c='red')
for agent in self.agents:
# 绘制无人机坐标点
self.ax.scatter(agent.x, agent.y, agent.z, c='blue')
def step(self, action, i):
"""环境的主要驱动函数,主逻辑将在该函数中实现。该函数可以按照时间轴,固定时间间隔调用
参数:
action (object): an action provided by the agent
i:i号无人机执行更新动作
返回值:
observation (object): agent对环境的观察,在本例中,直接返回环境的所有状态数据
reward (float) : 奖励值,agent执行行为后环境反馈
done (bool): 该局游戏时候结束,在本例中,只要自己被吃,该局结束
info (dict): 函数返回的一些额外信息,可用于调试等
"""
reward = 0.0
done = False
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=0
reward, done, info = self.agents[i].update(action) # 无人机执行行为,info为是否到达目标点
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
next_state = self.agents[i].state()
return next_state, reward, done, info
def reset(self):
"""将环境重置为初始状态,并返回一个初始状态;在环境中有随机性的时候,需要注意每次重置后要保证与之前的环境相互独立
"""
# 重置画布
# plt.close()
# self.fig=plt.figure()
# self.ax = self.fig.add_subplot(1, 1, 1, projection='3d')
# plt.clf()
# 重置智能体和障碍物
self.agents = []
self.obs = []
# 随机选择房间类型
p1 = 0.6 # 普通房间
p2 = 0.4 # 机房
# p3 = 0.2 # 走廊
# p4 = 0.1 # L型走廊
a = random.random()
if a < p1:
self.type = 1
elif a < p1 + p2:
self.type = 2
# elif a < p1 + p2 + p3:
# self.type = 3
# else:
# self.type = 4
#self.type = 1
# 普通房间
if self.type == 1:
# 定义规划空间大小,栅格长度为0.05m
self.len = random.randrange(100, 300) # 通常5m-20m
self.width = int(self.len * random.uniform(0.7, 1)) # 通常长宽比不低于0.7
self.h = int(max(self.len * random.uniform(0.3, 0.4), 50)) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
d_column = int(min(random.uniform(0.06, 0.1) * self.len, 30)) # 柱,几何宽度与房间大小成比例,最大不超过1.5m,长度贯穿房间
d_beam_main = d_column # 主梁
d_beam_second = int(0.8 * d_column) # 次梁
l_wall = int(random.uniform(0.35, 0.5) * self.width) # 隔墙长
d_wall = d_beam_second # 隔墙宽
# 柱(4个),房间四角
self.obs.append(obstruction(0, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(0, self.width - d_column, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, self.width - d_column, 0, d_column, d_column, self.h))
# 隔墙(0-2个),沿次梁方向(y向)
if self.len < 200:
n_wall = 0 # 原来为0
else:
n_wall = random.randint(1, 2)
if n_wall == 1:
p = random.random()
if p > 0.5:
self.obs.append(obstruction(int(random.uniform(0.3, 0.7) * self.len), 0, 0, d_wall, l_wall, self.h))
else:
self.obs.append(
obstruction(int(random.uniform(0.3, 0.7) * self.len), self.width - l_wall, 0, d_wall, l_wall,
self.h))
elif n_wall == 2:
self.obs.append(obstruction(int(random.uniform(0.3, 0.4) * self.len), 0, 0, d_wall, l_wall, self.h))
self.obs.append(obstruction(int(random.uniform(0.6, 0.7) * self.len), self.width - l_wall, 0, d_wall, l_wall, self.h))
# 主梁(2个),x向
self.obs.append(obstruction(0, 0, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
self.obs.append(obstruction(0, self.width - d_beam_main, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
# 次梁(2个),y向
self.obs.append(obstruction(int(random.uniform(0.2, 0.35) * self.len), 0, self.h - d_beam_second, d_beam_second, self.width, d_beam_second))
self.obs.append(obstruction(int(random.uniform(0.65, 0.8) * self.len), 0, self.h - d_beam_second, d_beam_second, self.width, d_beam_second))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
p = random.random()
if p > 0.6: # 原来为0.6
x = self.len - 1
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
else:
x = int(random.uniform(0.1, 0.9) * self.len) # 原来为(0.1,0.9)
y = 0
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
# 随机生成在附近都是无障碍的区域
if flag == 0:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
for i in range(self.n_agent):
# 随机生成智能体位置
while (1):
flag = 0
x = 0
y = int(random.uniform(0.1, 0.9) * self.width) # 原来为(0.1,0.9)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
# 机房
if self.type == 2:
# 定义规划空间大小,栅格长度为0.05m
self.len = random.randrange(100, 300) # 通常5m-20m
self.width = int(self.len * random.uniform(0.7, 1)) # 通常长宽比不低于0.7
self.h = int(max(self.len * random.uniform(0.3, 0.4), 50)) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
d_column = int(min(random.uniform(0.06, 0.1) * self.len, 30)) # 柱,几何宽度与房间大小成比例,最大不超过1.5m,长度贯穿房间
d_beam_main = d_column # 主梁
d_beam_second = int(0.8 * d_column) # 次梁
# 柱(4个),房间四角
self.obs.append(obstruction(0, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(0, self.width - d_column, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, self.width - d_column, 0, d_column, d_column, self.h))
# 设备(1-2个)
n_equip = random.randint(1, 2)
if n_equip == 1:
l_equip = int(random.uniform(0.5, 0.7) * self.len) # 设备长
w_equip = int(random.uniform(0.5, 0.7) * self.width) # 设备宽
h_equip = int(random.uniform(0.3, 0.7) * self.h) # 设备高
self.obs.append(obstruction(int(random.uniform(0.1, 0.2) * self.len), int(random.uniform(0.1, 0.2) * self.width), 0, l_equip, w_equip, h_equip))
elif n_equip == 2:
l_equip = int(random.uniform(0.2, 0.4) * self.len) # 设备长
w_equip = int(random.uniform(0.2, 0.4) * self.width) # 设备宽
h_equip = int(random.uniform(0.3, 0.5) * self.h) # 设备高
self.obs.append(obstruction(int(random.uniform(0.1, 0.2) * self.len), int(random.uniform(0.5, 0.6) * self.width), 0, l_equip, w_equip, h_equip))
self.obs.append(obstruction(int(random.uniform(0.5, 0.6) * self.len), int(random.uniform(0.1, 0.2) * self.width), 0, l_equip, w_equip, h_equip))
# 主梁(2个),x向
self.obs.append(obstruction(0, 0, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
self.obs.append(obstruction(0, self.width - d_beam_main, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
# 次梁(2个),y向
self.obs.append(obstruction(int(random.uniform(0.2, 0.35) * self.len), 0, self.h - d_beam_second, d_beam_second, self.width, d_beam_second))
self.obs.append(obstruction(int(random.uniform(0.65, 0.8) * self.len), 0, self.h - d_beam_second, d_beam_second, self.width, d_beam_second))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
x = int(random.uniform(0.5, 0.9) * self.len)
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.1, 0.4) * self.h)
for i in range(-1, 2):
for j in range(-1, 2):
for k in range(-1, 2):
if self.map[x + i, y + j, z + k] == 1 and self.map[x, y, z] == 0:
flag = 1
if flag == 1:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
for _ in range(self.n_agent):
while (1):
flag = 0
x = 0
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
# 走廊
if self.type == 3:
# 定义规划空间大小,栅格长度为0.05m
self.len = random.randrange(600, 1000) # 通常30m-50m
self.width = random.randrange(40, 80) # 通常2m-4m
self.h = random.randrange(50, 70) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
d_beam = random.randrange(4, 6) # 梁
dist_beam = random.randrange(80, 120) # 梁的间距
# 梁,y向
for i in range(int(self.len / dist_beam) + 1):
self.obs.append(obstruction(i * dist_beam, 0, self.h - d_beam, d_beam, self.width, d_beam))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
p = random.random()
if p > 0.8:
x = self.len - 1
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
else:
x = int(random.uniform(0.5, 0.9) * self.len)
y = 0
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
# 随机生成在附近都是无障碍的区域
if flag == 0:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
for _ in range(self.n_agent):
while (1):
flag = 0
x = 0
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
# L型走廊
if self.type == 4:
# 定义规划空间大小,栅格长度为0.05m
self.len = random.randrange(400, 600) # 通常10m-20m
self.width = self.len
self.h = random.randrange(50, 70) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
width_cor = random.randrange(40, 80) # 通常2m-4m
d_beam = random.randrange(4, 6) # 梁
dist_beam = random.randrange(80, 120) # 梁的间距
# 填充立方体
self.obs.append(obstruction(0, 0, 0, self.len - 1 - width_cor, self.width - 1 - width_cor, self.h))
# 梁,y向
for i in range(int((self.len - 1 - width_cor) / dist_beam) + 1):
self.obs.append(
obstruction(i * dist_beam, self.width - 1 - width_cor, self.h - d_beam, d_beam, width_cor, d_beam))
# 梁,x向
for i in range(int((self.width - 1 - width_cor) / dist_beam) + 1):
self.obs.append(
obstruction(self.len - 1 - width_cor, i * dist_beam, self.h - d_beam, width_cor, d_beam, d_beam))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
p = random.random()
if p > 0.8:
x = int(self.len - 1 - width_cor + random.uniform(0.1, 0.9) * width_cor)
y = 0
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
else:
x = self.len - 1 - width_cor
y = int(random.uniform(0.1, 0.9) * (self.width - 1 - width_cor))
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
# 随机生成在附近都是无障碍的区域
if flag == 0:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
for _ in range(self.n_agent):
while (1):
flag = 0
x = 0
y = int(self.width - 1 - width_cor + random.uniform(0.1, 0.9) * width_cor)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
return self.state
def reset_test(self):
# 环境重组测试
self.agents = []
self.obs = []
# 普通房间
if self.type == 1:
# 定义规划空间大小,栅格长度为0.05m
# self.len = random.randrange(100, 300) # 通常5m-20m
# self.width = int(self.len * random.uniform(0.7, 1)) # 通常长宽比不低于0.7
# self.h = int(max(self.len * random.uniform(0.3, 0.4), 50)) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
d_column = int(min(random.uniform(0.06, 0.1) * self.len, 30)) # 柱,几何宽度与房间大小成比例,最大不超过1.5m,长度贯穿房间
d_beam_main = d_column # 主梁
d_beam_second = int(0.8 * d_column) # 次梁
l_wall = int(random.uniform(0.35, 0.5) * self.width) # 隔墙长
d_wall = d_beam_second # 隔墙宽
# 柱(4个),房间四角
self.obs.append(obstruction(0, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(0, self.width - d_column, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, self.width - d_column, 0, d_column, d_column, self.h))
# 隔墙(0-2个),沿次梁方向(y向)
if self.len < 200:
n_wall = 0 # 原来为0
else:
n_wall = random.randint(1, 2)
if n_wall == 1:
p = random.random()
if p > 0.5:
self.obs.append(obstruction(int(random.uniform(0.3, 0.7) * self.len), 0, 0, d_wall, l_wall, self.h))
else:
self.obs.append(
obstruction(int(random.uniform(0.3, 0.7) * self.len), self.width - l_wall, 0, d_wall, l_wall,
self.h))
elif n_wall == 2:
self.obs.append(obstruction(int(random.uniform(0.3, 0.4) * self.len), 0, 0, d_wall, l_wall, self.h))
self.obs.append(
obstruction(int(random.uniform(0.6, 0.7) * self.len), self.width - l_wall, 0, d_wall, l_wall,
self.h))
# 主梁(2个),x向
self.obs.append(obstruction(0, 0, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
self.obs.append(
obstruction(0, self.width - d_beam_main, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
# 次梁(2个),y向
self.obs.append(
obstruction(int(random.uniform(0.2, 0.35) * self.len), 0, self.h - d_beam_second, d_beam_second,
self.width, d_beam_second))
self.obs.append(
obstruction(int(random.uniform(0.65, 0.8) * self.len), 0, self.h - d_beam_second, d_beam_second,
self.width, d_beam_second))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
p = random.random()
if p > 0.6: # 原来为0.6
x = self.len - 1
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
else:
x = int(random.uniform(0.1, 0.9) * self.len) # 原来为(0.1,0.9)
y = 0
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
# 随机生成在附近都是无障碍的区域
if flag == 0:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
while (1):
flag = 0
x = 0
y = int(random.uniform(0.1, 0.9) * self.width) # 原来为(0.1,0.9)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
# 机房
if self.type == 2:
# 定义规划空间大小,栅格长度为0.05m
self.len = random.randrange(100, 300) # 通常5m-20m
self.width = int(self.len * random.uniform(0.7, 1)) # 通常长宽比不低于0.7
self.h = int(max(self.len * random.uniform(0.3, 0.4), 50)) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
d_column = int(min(random.uniform(0.06, 0.1) * self.len, 30)) # 柱,几何宽度与房间大小成比例,最大不超过1.5m,长度贯穿房间
d_beam_main = d_column # 主梁
d_beam_second = int(0.8 * d_column) # 次梁
# 柱(4个),房间四角
self.obs.append(obstruction(0, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(0, self.width - d_column, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, 0, 0, d_column, d_column, self.h))
self.obs.append(obstruction(self.len - d_column, self.width - d_column, 0, d_column, d_column, self.h))
# 设备(1-2个)
n_equip = random.randint(1, 2)
if n_equip == 1:
l_equip = int(random.uniform(0.5, 0.7) * self.len) # 设备长
w_equip = int(random.uniform(0.5, 0.7) * self.width) # 设备宽
h_equip = int(random.uniform(0.3, 0.7) * self.h) # 设备高
self.obs.append(obstruction(int(random.uniform(0.1, 0.2) * self.len),
int(random.uniform(0.1, 0.2) * self.width), 0, l_equip, w_equip,
h_equip))
elif n_equip == 2:
l_equip = int(random.uniform(0.2, 0.4) * self.len) # 设备长
w_equip = int(random.uniform(0.2, 0.4) * self.width) # 设备宽
h_equip = int(random.uniform(0.3, 0.5) * self.h) # 设备高
self.obs.append(obstruction(int(random.uniform(0.1, 0.2) * self.len),
int(random.uniform(0.5, 0.6) * self.width), 0, l_equip, w_equip,
h_equip))
self.obs.append(obstruction(int(random.uniform(0.5, 0.6) * self.len),
int(random.uniform(0.1, 0.2) * self.width), 0, l_equip, w_equip,
h_equip))
# 主梁(2个),x向
self.obs.append(obstruction(0, 0, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
self.obs.append(
obstruction(0, self.width - d_beam_main, self.h - d_beam_main, self.len, d_beam_main, d_beam_main))
# 次梁(2个),y向
self.obs.append(
obstruction(int(random.uniform(0.2, 0.35) * self.len), 0, self.h - d_beam_second, d_beam_second,
self.width, d_beam_second))
self.obs.append(
obstruction(int(random.uniform(0.65, 0.8) * self.len), 0, self.h - d_beam_second, d_beam_second,
self.width, d_beam_second))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
x = int(random.uniform(0.5, 0.9) * self.len)
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.1, 0.4) * self.h)
for i in range(-1, 2):
for j in range(-1, 2):
for k in range(-1, 2):
if self.map[x + i, y + j, z + k] == 1 and self.map[x, y, z] == 0:
flag = 1
if flag == 1:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
while (1):
flag = 0
x = 0
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
# 走廊
if self.type == 3:
# 定义规划空间大小,栅格长度为0.05m
self.len = random.randrange(600, 1000) # 通常30m-100m
self.width = random.randrange(40, 80) # 通常2m-4m
self.h = random.randrange(50, 70) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
d_beam = random.randrange(4, 6) # 梁
dist_beam = random.randrange(80, 120) # 梁的间距
# 梁,y向
for i in range(int(self.len / dist_beam) + 1):
self.obs.append(obstruction(i * dist_beam, 0, self.h - d_beam, d_beam, self.width, d_beam))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
p = random.random()
if p > 0.8:
x = self.len - 1
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
else:
x = int(random.uniform(0.5, 0.9) * self.len)
y = 0
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
# 随机生成在附近都是无障碍的区域
if flag == 0:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
while (1):
flag = 0
x = 0
y = int(random.uniform(0.1, 0.9) * self.width)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
# L型走廊
if self.type == 4:
# 定义规划空间大小,栅格长度为0.05m
self.len = random.randrange(400, 600) # 通常10m-20m
self.width = self.len
self.h = random.randrange(50, 70) # 普通住宅层高不超过2.8m,写字楼层高不超过4.5m
self.map = np.zeros((self.len, self.width, self.h))
width_cor = random.randrange(40, 80) # 通常2m-4m
d_beam = random.randrange(4, 6) # 梁
dist_beam = random.randrange(80, 120) # 梁的间距
# 填充立方体
self.obs.append(obstruction(0, 0, 0, self.len - 1 - width_cor, self.width - 1 - width_cor, self.h))
# 梁,y向
for i in range(int((self.len - 1 - width_cor) / dist_beam) + 1):
self.obs.append(obstruction(i * dist_beam, self.width - 1 - width_cor, self.h - d_beam, d_beam, width_cor, d_beam))
# 梁,x向
for i in range(int((self.width - 1 - width_cor) / dist_beam) + 1):
self.obs.append(obstruction(self.len - 1 - width_cor, i * dist_beam, self.h - d_beam, width_cor, d_beam, d_beam))
for obs in self.obs:
self.map[obs.x:obs.x + obs.l, obs.y:obs.y + obs.w, obs.z:obs.z + obs.h] = 1
# 随机生成目标点位置
while (1):
flag = 0
p = random.random()
if p > 0.8:
x = int(self.len - 1 - width_cor + random.uniform(0.1, 0.9) * width_cor)
y = 0
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
else:
x = self.len - 1 - width_cor
y = int(random.uniform(0.1, 0.9) * (self.width - 1 - width_cor))
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
# 随机生成在附近都是无障碍的区域
if flag == 0:
break
self.target = [sn(x, y, z)]
self.map[x, y, z] = -1
# 随机生成智能体位置
while (1):
flag = 0
x = 0
y = int(self.width - 1 - width_cor + random.uniform(0.1, 0.9) * width_cor)
z = int(random.uniform(0.6, 0.9) * self.h)
if self.map[x, y, z] == 1:
flag = 1
if flag == 0:
break
self.agents.append(AGENT(x, y, z, self))
# self.map[self.uavs[i].x,self.uavs[i].y,self.uavs[i].z]=1
# 更新智能体状态
self.state = np.vstack([uav.state() for (_, uav) in enumerate(self.agents)])
return self.state
if __name__ == "__main__":
env = Env()
env.reset()
env.render()
plt.pause(30)