-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZF.m
201 lines (173 loc) · 4.97 KB
/
ZF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
function [alpha,ZFmult,data,dec]=ZF(syst,WB,WC,Pflag,alpha_low)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Authors:
% MC Turner and CR Richardson
% ECS
% University of Southampton
% UK
%
% Date: 15/05/23
%
% Purpose:
% Compute the maximum series gain (alpha) when using the ZF criterion as
% defined in Reference 31.
%
% Parameters:
% syst: Structure containing the system matrices of an example.
% WB=WC: User defined diagonal matrices
% Pflag: 1 = Popov multiplier used; 0 Popov multiplier not used
% alpha_low: lower bound of series gain (e.g. from Circle Crit.)
% Returns:
% alpha: Maximum series gain (float)
% ZFmult: Associated Zames-Falb multiplier which proves stability
% data: Structure containing solutions of the LMI parametrised by alpha
% dec: # number of decision variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Parameters
A = syst.a;
B = syst.b;
C = syst.c;
D = syst.d;
[n,m] = size(B); % n = dimension of state, m = dimension of output
%% Initialising alpha
if m == 1
Gm = margin(ss(A,B,-C,-D));
if Gm > 10000
Gm = 10000;
end
else
Gm = 1000;
end
% Determine initial upper/lower bound and initial test value
alpha_up = Gm*0.999;
if ((alpha_up - alpha_low)/alpha_up) < 0.0001
alpha = -alpha_low;
ZFmult = tf(0,1);
Vm = 0;
etam = 0;
else
alpha = alpha_up;
ZFmult = [];
end
%%
% Determine alpha by repeatedly solving LMI until the largest alpha is
% found where LMI is feasible
while ((alpha_up - alpha_low)/alpha_up) > 0.0001
setlmis([]);
P11 = lmivar(1,[n,1]);
S11 = lmivar(1,[n,1]);
N = lmivar(1,[n,1]);
H0 = lmivar(1,kron([1,0],ones(m,1)));
if Pflag == 1
etaP = lmivar(1,kron([1,0],ones(m,1))); % Popov mutiplier - diagonal
VP = lmivar(1,kron([1,0],ones(m,1))); % Circle multiplier - diagonal
end
Acb = lmivar(1,[n,1]);
Aab = lmivar(1,[n,1]);
[~,~,sBc] = lmivar(2,[n,1]);
[~,~,sBa] = lmivar(2,[n,1]);
Bcb = lmivar(3,kron(sBc,ones(1,m))); % columns identical
Bab = lmivar(3,kron(sBa,ones(1,m)));
% LMI
lmiterm([1,1,1,S11],1,A,'s');
lmiterm([1,1,1,Bab],-1,WC*C,'s');
lmiterm([1,1,2,S11],1,A);
lmiterm([1,1,2,P11],A',1);
lmiterm([1,1,2,-Acb],1,1);
lmiterm([1,1,2,-Aab],1,1);
lmiterm([1,1,2,-Bcb],C'*WB,1);
lmiterm([1,1,2,Bab],-1,WC*C);
lmiterm([1,1,3,N],A',1);
lmiterm([1,1,3,-Bab],C'*WC,1);
lmiterm([1,1,3,-Aab],1,1);
lmiterm([1,1,4,S11],1*alpha,B);
lmiterm([1,1,4,Bcb],1,WC);
lmiterm([1,1,4,Bab],1,WC);
lmiterm([1,1,4,-H0],C',1);
if Pflag == 1
lmiterm([1,1,4,etaP],A'*C',1); % Popov
lmiterm([1,1,4,-VP],C',1); % Circle
end
lmiterm([1,2,2,P11],1,A,'s');
lmiterm([1,2,2,Bcb],1,WB*C,'s');
lmiterm([1,2,3,N],A',1);
lmiterm([1,2,3,-Bab],C'*WC,1);
lmiterm([1,2,3,Aab],-1,1);
lmiterm([1,2,4,P11],1*alpha,B);
lmiterm([1,2,4,Bcb],-1,WB);
lmiterm([1,2,4,Bab],-1,WB);
lmiterm([1,2,4,-H0],C',1);
if Pflag == 1
lmiterm([1,2,4,etaP],A'*C',1); % Popov
lmiterm([1,2,4,-VP],C',1); % Circle
end
lmiterm([1,3,3,Aab],-1,1,'s');
lmiterm([1,3,4,N],1*alpha,B);
lmiterm([1,3,4,Bab],-1,WB+WC);
lmiterm([1,4,4,H0],-1,1,'s');
if Pflag == 1
lmiterm([1,4,4,etaP],1*alpha,C*B,'s'); % Popov
lmiterm([1,4,4,VP],1,-1,'s'); % Circle
end
% L1 bound LMI
E = eye(m);
e1 = E(:,1);
lmiterm([2,1,1,0],-1);
lmiterm([2,1,2,-Bcb],-e1',1);
lmiterm([2,1,3,-Bab],-e1',1);
lmiterm([2,2,2,Acb],-1,0.5,'s');
lmiterm([2,2,3,0],zeros(n,n));
lmiterm([2,3,3,Aab],-1,0.5,'s');
% L1 bound LMIs - Assumes H0 is diagonal
for i = 1:m
lmiterm([2+i,1,1,0],trace(WB)*E(i,:)*WC*E(:,i));
lmiterm([2+i,1,1,H0],-E(i,:),E(:,i));
end
lmiterm([2+m+1,1,1,S11],-1,1,'s'); % Positive definite conditions
lmiterm([2+m+2,1,1,N],-1,1,'s');
lmiterm([2+m+3,1,1,P11],-1,1,'s');
lmiterm([2+m+3,1,1,S11],1,1,'s');
lmiterm([2+m+3,1,1,N],1,1,'s');
if Pflag == 1
lmiterm([2+m+4,1,1,VP],1,-1,'s');
end
LMISYS = getlmis;
[tmin,xfeas] = feasp(LMISYS,[1e-20 5000 -0.1 1000 1]);
% Update alpha upper/lower bound plus new test value
if tmin < 0
alpha_low = alpha; % if LMIs are feasible
else
alpha_up = alpha; % if LMIs are infeasible
end
alpha = (alpha_up + alpha_low)/2;
end
%% Return solutions
dec = decnbr(LMISYS); % returns number of decision varibles
data.P11 = dec2mat(LMISYS,xfeas,P11);
data.S11 = dec2mat(LMISYS,xfeas,S11);
data.N = dec2mat(LMISYS,xfeas,N);
data.H0 = dec2mat(LMISYS,xfeas,H0);
data.Acb = dec2mat(LMISYS,xfeas,Acb);
data.Aab = dec2mat(LMISYS,xfeas,Aab);
data.Bcb = dec2mat(LMISYS,xfeas,Bcb);
data.Bab = dec2mat(LMISYS,xfeas,Bab);
if Pflag == 1
data.etaP = dec2mat(LMISYS,xfeas,etaP); % Popov multiplier
data.VP = dec2mat(LMISYS,xfeas,VP); % Circle multiplier
end
if D ~= zeros(m)
disp('D not equal to zero. ZF criterion may not be applied!');
alpha = nan;
dec = nan;
data.P11 = nan;
data.S11 = nan;
data.N = nan;
data.H0 = nan;
data.Acb = nan;
data.Aab = nan;
data.Bcb = nan;
data.Bab = nan;
data.etaP = nan;
data.VP = nan;
end
end