-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_latspace_multi.py
57 lines (42 loc) · 1.61 KB
/
eval_latspace_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from data.images import CIFAR10_NAME, TINY_IMAGENET_NAME, ImagesDataset
from models.decoder import Decoder
from models.lenetlike import LeNetLike
from models.resnet_fusedbn import ResNetFusedBN
from models.vanillacnn import VanillaCNN
from trainers.classification import ClassificationTrainer
device = torch.device("cuda")
# dataset_name = CIFAR10_NAME
dataset_name = TINY_IMAGENET_NAME
dataset = ImagesDataset(dataset_name)
decoder_ckpt_path = f"/path/to/decoder/ckpt"
embedding_path = f"/path/to/embedding"
net = LeNetLike(0, 0, dataset_name)
# net = VanillaCNN(0, 1, dataset_name)
# net = ResNetFusedBN(0, 2, 8, dataset_name)
# net = ResNetFusedBN(0, 3, 32, dataset_name)
net.eval()
prep_size = (88, 10000)
emb_size = 4096
_, _, test_loader = dataset.get_loaders()
out_nets = [
LeNetLike(0, 0, dataset_name),
VanillaCNN(0, 1, dataset_name),
ResNetFusedBN(0, 2, 8, dataset_name),
ResNetFusedBN(0, 3, 32, dataset_name),
]
decoder = Decoder(out_nets, emb_size, prep_size, arch_prediction=True, num_archs=4)
ckpt = torch.load(decoder_ckpt_path)
decoder.load_state_dict(ckpt["1"])
decoder = decoder.to(device)
decoder.eval()
embedding = torch.load(embedding_path)
pred_class, pred_prep = decoder(embedding)
pred_class_id = torch.argmax(pred_class, dim=1).item()
if pred_class_id == net.class_id:
print("The predicted architecture is correct.")
else:
print("The predicted architecture differs from the specified one.")
pred_arch = decoder.out_nets[pred_class_id]
test_accuracy = ClassificationTrainer.eval_accuracy(pred_arch, test_loader, pred_prep, device)
print("Test accuracy:", test_accuracy)