-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_multi.py
135 lines (111 loc) · 3.61 KB
/
eval_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import matplotlib
matplotlib.rcParams["pdf.fonttype"] = 42
matplotlib.rcParams["ps.fonttype"] = 42
from functools import partial
from pathlib import Path
from typing import List
import matplotlib.pyplot as plt
import torch
from data.images import CIFAR10_NAME, TINY_IMAGENET_NAME, ImagesDataset
from data.nets import NetsDataset
from models.decoder import Decoder
from models.encoder import Encoder
from models.lenetlike import LeNetLike
from models.resnet_fusedbn import ResNetFusedBN
from models.vanillacnn import VanillaCNN
from trainers.classification import ClassificationTrainer
from trainers.utils import progress_bar
device = torch.device("cuda")
# dataset_name = CIFAR10_NAME
dataset_name = TINY_IMAGENET_NAME
prep_size = (88, 10000)
emb_size = 4096
input_list = f"/path/to/input/list"
ckpt_file = f"/path/to/netspace/ckpt"
save_path = f"images/{dataset_name}/multi.pdf"
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
dataset = ImagesDataset(dataset_name, batch_size=128)
_, _, test_loader = dataset.get_loaders()
eval_func = partial(ClassificationTrainer.eval_accuracy, images_loader=test_loader, device=device)
nets_dataset = NetsDataset(input_list, device, eval_func, prep_size)
ckpt = torch.load(ckpt_file)
enc = Encoder(emb_size=emb_size)
enc.load_state_dict(ckpt["0"])
enc.to(device)
enc.eval()
out_nets = []
out_nets.append(LeNetLike(0, 0, dataset_name))
out_nets.append(VanillaCNN(0, 1, dataset_name))
out_nets.append(ResNetFusedBN(0, 2, 8, dataset_name))
out_nets.append(ResNetFusedBN(0, 3, 32, dataset_name))
dec = Decoder(out_nets, emb_size, prep_size, arch_prediction=True)
dec.load_state_dict(ckpt["1"])
dec.to(device)
dec.eval()
target_scores: List[float] = []
target_class_ids: List[int] = []
pred_scores: List[float] = []
pred_class_ids: List[int] = []
with torch.no_grad():
for net, prep in progress_bar(nets_dataset):
target_scores.append(net.score)
target_class_ids.append(net.class_id)
embedding = enc(prep.unsqueeze(0))
pred_class, pred_prep = dec(embedding)
pred_class_id = int(torch.argmax(pred_class, dim=1).item())
pred_class_ids.append(pred_class_id)
predicted_net = dec.out_nets[pred_class_id]
predicted_score = eval_func(predicted_net, net_prep=pred_prep)
pred_scores.append(predicted_score)
min_score = 1000.0
max_score = 0.0
for i in range(len(target_scores)):
min_score = min(min_score, target_scores[i], pred_scores[i])
max_score = max(max_score, target_scores[i], pred_scores[i])
fig, ax = plt.subplots(figsize=(6, 3))
ax.set_xlabel("target instance id", fontsize=24)
ax.set_ylabel("accuracy", fontsize=24)
ax.set_ylim(min_score - 3, max_score + 3)
ax.grid(alpha=0.2)
ax.tick_params(axis="both", which="major", labelsize=14)
color_map = {
0: "red",
1: "#03afff",
2: "green",
3: "fuchsia",
}
idx = [n for n in range(len(target_scores))]
target_colors = [color_map[arch] for arch in target_class_ids]
predicted_colors = [color_map[arch] for arch in pred_class_ids]
ax.scatter(
idx,
target_scores,
c=target_colors,
marker="o",
s=50,
label="target",
zorder=2,
)
ax.scatter(
idx,
pred_scores,
c=predicted_colors,
marker="+",
s=50,
label="predicted",
zorder=2,
)
ax.legend(loc="lower right", fontsize=20, handletextpad=0.1)
leg = ax.get_legend()
leg.legendHandles[0].set_color("black")
leg.legendHandles[1].set_color("black")
for i in range(len(target_scores)):
ax.plot(
[i, i],
[target_scores[i], pred_scores[i]],
linestyle=":",
c="black",
alpha=0.3,
zorder=1,
)
fig.savefig(save_path, bbox_inches="tight", dpi=600)