-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
151 lines (140 loc) · 7.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import json
import pandas as pd
import torch
import argparse
import itertools
import numpy as np
import datetime as dt
from tqdm import tqdm
from model import Identifier
try:
from tensorboardX import SummaryWriter
except ImportError:
from torch.utils.tensorboard import SummaryWriter
from transformers import (AdamW, AutoTokenizer, get_linear_schedule_with_warmup)
from utils import convert_data_to_dataloader, training, evaluation, inference
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
def parser():
parser = argparse.ArgumentParser()
parser.add_argument('--emb_dim', default=128, type=int)
parser.add_argument('--hid_size', default=256, type=int)
parser.add_argument('--max_length', default=128, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--epochs', default=10, type=int)
parser.add_argument('--data_path', default='./data/data_50.json')
parser.add_argument('--bidirectional', default=False, action='store_true')
parser.add_argument('--dropout', default=0.1)
parser.add_argument('--num_layers', default=1, type=int)
parser.add_argument('--train', default=False, action='store_true')
parser.add_argument('--eval', default=False, action='store_true')
parser.add_argument('--infer', default=False, action='store_true')
parser.add_argument('--output_dir', default='./models')
parser.add_argument('--card_number', default=0, type=int, help='Your GPU card number.')
parser.add_argument('--use_cpu', default=False, action="store_true")
parser.add_argument('--gradient_accumulation_steps', default=1, type=int)
parser.add_argument('--fp16', default=False, action='store_true')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--warmup_proportion', default=0.0)
parser.add_argument('--learning_rate', default=5e-3, type=float)
parser.add_argument('--max_grad_norm', default=10)
parser.add_argument('--infer_file_path', default=None, help="The csv file path of the file to be evaluated, the file should contain on column with column name `text`")
return parser.parse_args()
def main(args):
device = torch.device("cuda:{}".format(args.card_number) if torch.cuda.is_available() and args.use_cpu is False else "cpu")
with open(args.data_path) as f:
data = json.load(f)
id2code = dict(zip(range(len(data)), data.keys()))
tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
# tokenizer = Tokenizer(BPE())
# trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
# flatten_data = list(itertools.chain(*data.values()))
# tokenizer.train_from_iterator(flatten_data, trainer=trainer, length=len(flatten_data))
MODEL_PATH = os.path.join(args.output_dir, 'model.pt')
if args.train:
train_dataloader, val_dataloader = convert_data_to_dataloader(data, tokenizer, args.max_length, args.batch_size, seed=args.seed)
model = Identifier(tokenizer.vocab_size, args.emb_dim, args.hid_size, len(data), args.num_layers, args.bidirectional,
dropout=args.dropout)
model.to(device)
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.epochs
warmup_steps = int(args.warmup_proportion * num_train_optimization_steps)
print(f"Number of training optimization steps: {num_train_optimization_steps}, warmup steps {warmup_steps}")
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=num_train_optimization_steps)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
writer = SummaryWriter(log_dir='./log/')
scaler = torch.cuda.amp.GradScaler() if args.fp16 else None
for epoch in range(args.epochs):
print("Epoch: %4i" % epoch, dt.datetime.now())
# TRAINING
model, optimizer, scheduler = training(train_dataloader, model=model, device=device,
optimizer=optimizer, scheduler=scheduler,
max_grad_norm=args.max_grad_norm, epoch=epoch,
writer=writer,
gradient_accumulation_steps=args.gradient_accumulation_steps,
scaler=scaler)
acc, _, _ = evaluation(val_dataloader, model, device)
print("Accuracy is %.2f" % acc)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
torch.save(model.state_dict(), MODEL_PATH)
if args.eval and not args.train:
_, val_dataloader = convert_data_to_dataloader(data, tokenizer, args.max_length, args.batch_size,
seed=args.seed)
# Model
model = Identifier(tokenizer.vocab_size, args.emb_dim, args.hid_size, len(data), args.num_layers,
args.bidirectional,
dropout=args.dropout)
model.load_state_dict(torch.load(MODEL_PATH, map_location='cpu'))
model.to(device)
acc, preds, labels = evaluation(val_dataloader, model, device)
flatten_data = list(itertools.chain(*data.values()))
texts = [flatten_data[i] for i in val_dataloader.dataset.indices]
with open('./data/languages.json') as f:
code2lan = json.load(f)
preds = [code2lan[id2code[i]] for i in preds]
labels = [code2lan[id2code[i]] for i in labels]
print("Accuracy is %.2f" % acc)
pd.DataFrame({'text': texts, 'target_label': labels, 'prediction': preds}).to_excel('evaluation_result_with_acc_%.2f.xlsx' % acc)
# Load the fine-tuned model:
if args.infer:
# Model
model = Identifier(tokenizer.vocab_size, args.emb_dim, args.hid_size, len(data), args.num_layers,
args.bidirectional,
dropout=args.dropout)
model.load_state_dict(torch.load(MODEL_PATH, map_location='cpu'))
model.to(device)
with open('./data/languages.json') as f:
code2lan = json.load(f)
if args.infer_file_path is not None:
df = pd.read_csv(args.infer_file_path)
texts = df['text'].values.tolist()
result = inference(texts, model, tokenizer, args.max_length, device)
result = [code2lan[id2code[i]] for i in result]
df['preds'] = result
df.to_csv('preds.csv')
else:
while True:
input_text = input("Please input your sentence:\n")
if input_text not in ['q', 'quit', '']:
result = inference([input_text], model, tokenizer, args.max_length, device)[0]
print(f'Your input sentence seems to be in {code2lan[id2code[result]]}')
else:
break
if __name__ == '__main__':
args = parser()
main(args)