-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparallel_pi.py
executable file
·123 lines (113 loc) · 3.99 KB
/
parallel_pi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from __future__ import print_function, division
"""
An estimate of the numerical value of pi via Monte Carlo integration.
Computation is distributed across processors via MPI.
"""
import numpy as np
from mpi4py import MPI
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import sys
def throw_darts(n):
"""
returns an array of n uniformly random (x,y) pairs lying within the
square that circumscribes the unit circle centered at the origin,
i.e., the square with corners at (-1,-1), (-1,1), (1,1), (1,-1)
"""
darts = 2*np.random.random((n,2)) - 1
return darts
def in_unit_circle(p):
"""
returns a boolean array, whose elements are True if the corresponding
point in the array p is within the unit circle centered at the origin,
and False otherwise -- hint: use np.linalg.norm to find the length of a vector
"""
return np.linalg.norm(p,axis=-1)<=1.0
def estimate_pi(n, block=100000):
"""
returns an estimate of pi by drawing n random numbers in the square
[[-1,1], [-1,1]] and calculating what fraction land within the unit circle;
in this version, draw random numbers in blocks of the specified size,
and keep a running total of the number of points within the unit circle;
by throwing darts in blocks, we are spared from having to allocate
very large arrays (and perhaps running out of memory), but still can get
good performance by processing large arrays of random numbers
"""
total_number = 0
i = 0
while i < n:
if n-i < block:
block = n-i
darts = throw_darts(block)
number_in_circle = np.sum(in_unit_circle(darts))
total_number += number_in_circle
i += block
return (4.*total_number)/n
def estimate_pi_in_parallel(comm, N):
"""
on each of the available processes,
calculate an estimate of pi by drawing N random numbers;
the master processes will assemble all of the estimates
produced by all workers, and compute the mean and
standard deviation across the independent runs
"""
if rank == 0:
data = [N for i in range(size)]
else:
data = None
data = comm.scatter(data, root=0)
#
pi_est = estimate_pi(N)
#
pi_estimates = comm.gather(pi_est, root=0)
if rank == 0:
return pi_estimates
def estimate_pi_statistics(comm, Ndarts, Nruns_per_worker):
results = []
for i in range(Nruns_per_worker):
result = estimate_pi_in_parallel(comm, Ndarts)
if rank == 0:
results.append(result)
if rank == 0:
pi_est_mean = np.mean(results)
pi_est_std = np.std(results)
return pi_est_mean, pi_est_std
if __name__ == '__main__':
"""
for N from 4**5 to 4**14 (integer powers of 4),
compute mean and standard deviation of estimates of pi
by throwing N darts multiple times (Nruns_total times,
distributed across workers)
"""
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
if rank == 0:
print("MPI size = {}".format(size))
sys.stdout.flush()
Nruns_total = 64
Nruns_per_worker = Nruns_total // size
#
estimates = []
for log4N in range(5,15):
N = int(4**log4N)
result = estimate_pi_statistics(comm, N, Nruns_per_worker)
if rank == 0:
pi_est_mean, pi_est_std = result
estimates.append((N, pi_est_mean, pi_est_std))
print(N, pi_est_mean, pi_est_std)
sys.stdout.flush()
if rank == 0:
estimates = np.array(estimates)
plt.figure()
plt.errorbar(np.log2(estimates[:,0]), estimates[:,1], yerr=estimates[:,2])
plt.ylabel('estimate of pi')
plt.xlabel('log2(number of darts N)')
plt.savefig('pi_vs_log2_N.png')
plt.figure()
plt.ylabel('log2(standard deviation)')
plt.xlabel('log2(number of darts N)')
plt.plot(np.log2(estimates[:,0]), np.log2(estimates[:,2]))
plt.savefig('log2_std_vs_log2_N.png')
MPI.Finalize()