forked from THUDM/CogVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_cogvideox_lora.py
125 lines (110 loc) · 4.64 KB
/
load_cogvideox_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
import time
from diffusers.utils import export_to_video
from diffusers.image_processor import VaeImageProcessor
from datetime import datetime, timedelta
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler, CogVideoXDPMScheduler
import os
import torch
import argparse
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--lora_weights_path",
type=str,
default=None,
required=True,
help="Path to lora weights.",
)
parser.add_argument(
"--lora_r",
type=int,
default=128,
help="""LoRA weights have a rank parameter, with the default for 2B trans set at 128 and 5B trans set at 256.
This part is used to calculate the value for lora_scale, which is by default divided by the alpha value,
used for stable learning and to prevent underflow. In the SAT training framework,
alpha is set to 1 by default. The higher the rank, the better the expressive capability,
but it requires more memory and training time. Increasing this number blindly isn't always better.
The formula for lora_scale is: lora_r / alpha.
""",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=1,
help="""LoRA weights have a rank parameter, with the default for 2B trans set at 128 and 5B trans set at 256.
This part is used to calculate the value for lora_scale, which is by default divided by the alpha value,
used for stable learning and to prevent underflow. In the SAT training framework,
alpha is set to 1 by default. The higher the rank, the better the expressive capability,
but it requires more memory and training time. Increasing this number blindly isn't always better.
The formula for lora_scale is: lora_r / alpha.
""",
)
parser.add_argument(
"--prompt",
type=str,
help="prompt",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions and checkpoints will be written.",
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
pipe = CogVideoXPipeline.from_pretrained(args.pretrained_model_name_or_path, torch_dtype=torch.bfloat16).to(device)
pipe.load_lora_weights(args.lora_weights_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="cogvideox-lora")
# pipe.fuse_lora(lora_scale=args.lora_alpha/args.lora_r, ['transformer'])
lora_scaling=args.lora_alpha/args.lora_r
pipe.set_adapters(["cogvideox-lora"], [lora_scaling])
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
os.makedirs(args.output_dir, exist_ok=True)
latents = pipe(
prompt=args.prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=3.0,
generator=torch.Generator(device="cpu").manual_seed(42),
).frames
batch_size = latents.shape[0]
batch_video_frames = []
for batch_idx in range(batch_size):
pt_image = latents[batch_idx]
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
batch_video_frames.append(image_pil)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"{args.output_dir}/{timestamp}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
tensor = batch_video_frames[0]
fps=math.ceil((len(batch_video_frames[0]) - 1) / 6)
export_to_video(tensor, video_path, fps=fps)