-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathFeynDyn.m
executable file
·237 lines (207 loc) · 17.4 KB
/
FeynDyn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
%% 1) The paper: N. Dattani (2013) Comp. Phys. Comm. Volume 184, Issue 12, Pg. 2828-2833 , AND
%% 2) The code: N. Dattani (2013) FeynDyn. http://dx.doi.org/10.6084/m9.figshare.823549
%% Bug reports, suggestions, and requests for extensions are more than encouraged: [email protected] (if it bounces, you can try [email protected] or [email protected])
%% FEYN DYN, VERSION 2013.11.28
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [rho,elapsedTime]=FeynDyn(Nbath,finalPoint,deltaKmax,totalT,rho,H,systemCouplingMatrix,w,dw,J,temperature,wholeDensityMatrixOrJustDiagonals,allPointsORjustFinalPoint,cpuORgpu)
%% 1. Fundamental constansts
kb=1.3806504*10^(-23); % Joules / Kelvin
hbar=1.054571628*10^(-34); % Joules * seconds
beta=1/(kb*temperature);
%% 2. Setup arrays
M=length(H);M2=M^2;
Svector=eig(systemCouplingMatrix).';
Svectors=diag(ones(Nbath,1));
diagonals=diag(reshape(1:M2,M,M));
upperTriangle=find(triu(reshape(1:M2,M,M)));
initialPoint=0;
dt=totalT/finalPoint;
gridOfTimeIndices=initialPoint:1:finalPoint; % to determine how big to make the K array. This is only necessary for time-dependent OQS hamiltonians.
U=expm(-1i*H*dt/hbar);
Uback=U';
%% 3. Calculation of eta coefficients
w=[-fliplr(w) w];J=[-fliplr(J) J];
temp=beta*hbar*w/2;
MakMak=(1/(hbar*pi))*J.*exp(temp)./(sinh(temp).*w.^2);
for deltaK=1:deltaKmax%-1 % the -1 is because eta1 isn't meant to go up to deltaKmax, that's what eta 5 is for
eta1(deltaK)=sum(2*MakMak.*((sin(w*dt/2)).^2).*exp(-1i*w*dt*deltaK))*dw;
end
eta2=sum(0.5*MakMak.*(1-exp(-1i*w*dt)))*dw;
for N=2:deltaKmax+1 %N=1 is a dummy index for the eta_00 case, which is covered by eta4 and eta2
eta3(N)=sum(2*MakMak.*((sin(w*dt/4)).^2).*exp(-1i*w*((N-1)*dt - dt/2)))*dw; %the N-1 is because, N is actually starting at 2 and going to deltaKmax+1, instead of going from 1 to deltaKmax
end
eta4=sum(0.5*MakMak.*(1-exp(-1i*w*dt/2)))*dw;
for k=2:deltaKmax+1 %k=1 is a dummy index for the eta_00 case, which is covered by eta4 and eta2
eta5(k)=sum(2*MakMak.*sin(w*dt/4).*sin(w*dt/2).*exp(-1i*w*((k-1)*dt-dt/4)))*dw; %the k-1 is because, k is actually starting at 2 and going to deltaKmax+1, instead of going from 1 to deltaKmax
end
for NminusK=1:deltaKmax%-1 %because eta6 isn't meant to go up to deltaKmax, that's what eta 3 is for
eta6(NminusK)=sum(2*MakMak.*sin(w*dt/4).*sin(w*dt/2).*exp(-1i*w*((NminusK)*dt-dt/4)))*dw;
end
etaK=zeros(1,deltaKmax+1);etaK(1)=eta2;etaK(2:deltaKmax+1)=eta1;%etaK(deltaKmax+1)=eta5(deltaKmax);
etaN=zeros(1,deltaKmax+1);etaN(1)=eta4;
etaN(2:deltaKmax+1)=eta6;%etaN(deltaKmax+1)=eta3(deltaKmax);
kernel=etaK;kernelConj=conj(kernel);kernelEnd=etaN;kernelEndConj=conj(kernelEnd);kernelTD=eta5;kernelTDConj=conj(kernelTD);kernelTDend=eta3;kernelTDendConj=conj(kernelTDend); %kernelTemp(1)=eta5_10, (2)=eta5_20, etc.. kernelTempEnd is same but with eta3
kernelTD(1)=eta4;kernelTDend(1)=eta4;
%% 4. Calculation of K tensor and I tensors
indicesForF=npermutek(1:M,4); %The way that the indices are defined for the influence functional
indicesForK=[indicesForF(:,3) , indicesForF(:,1) , indicesForF(:,2) ,indicesForF(:,4)];
K=U(indicesForK(:,1)+M*(indicesForK(:,2)-1)).*Uback(indicesForK(:,3)+M*(indicesForK(:,4)-1)); %row indicesForK(:,1) of U and column indicesForK(:,2) of U .. see page 8 of lab book
K=repmat(K,1,length(gridOfTimeIndices)); % for time dependent OQS hamiltonians
[ia,ib] = ndgrid(1:M);
Sdiff=(kron(Svector,ones(1,M))-kron(ones(1,M),Svector))'; % would not need to transpose the things in the next three lines if Mvector was already a column vector (1:M)'
I_00=expand(exp(-Sdiff.*(kernelEnd(1)*Svector(1,ib)-kernelEndConj(1)*Svector(1,ia)).'),[M2,1]); %eq(14) on pg 4601 of tensor prop. I. repeated values are for n=1, changing values are for n=0
I_mk=zeros(M2^2,deltaKmax+1);I_mkEnd=I_mk;I_mkTD=I_mk;I_mkTDend=I_mk; %I_00 means I0(sk), I_mk means I(sk,s minus k) ?
I_mk(:,1)=kron(ones(M2,1),exp(-Sdiff.*(kernel(1)*Svector(1,ib)-kernelConj(1)*Svector(1,ia)).')); %eq(14) on pg 4601 of tensor prop. I. repeated values are for 0 (or just n-1?), changing values are for n %might be better to rearrange stuff so that you can use kron if repmat is slow in fortran, %is it better computationally to do this in one line or separate calcs ? This is delatK=0, ie, eq 14 on pg 4604 of Tensor Prop. I, the diff btwn this and the line above is that this is for sk>=1 while line above is for sk=0 ? eta+kk ?
I_mkEnd(:,1)=kron(ones(M2,1),exp(-Sdiff.*(kernelEnd(1)*Svector(1,ib)-kernelEndConj(1)*Svector(1,ia)).')); %repeated values are for 0, changing values are for n %might be better to rearrange stuff so that you can use kron if repmat is slow in fortran, %is it better computationally to do this in one line or separate calcs ? This is delatK=0, eta_NN ?
for deltaK=1:deltaKmax %should go up to deltaKmax-1 and deltaKmax should be treated separately
I_mk(:,1+deltaK)=exp(-kron((kernel(1+deltaK)*Svector(1,ib)-kernelConj(1+deltaK)*Svector(1,ia)).',Sdiff)); %can't we just make kernel a vector and use kernel(deltaK) ? , %saving kernelConj reduces number of times 'conj.m' has to be called, but adds another variable, which is worse ? %is it bad to have such a big argument in kron ? or should i save it and make 2 lines, depending on your units for kernel, you might need to factor the argument by 1/hbar. The reshaping afterwards must be redundant, we must be able to use kron in such a way that the answer ends up in matrix form ,
I_mkTD(:,1+deltaK)=exp(-kron((kernelTD(1+deltaK)*Svector(1,ib)-kernelTDConj(1+deltaK)*Svector(1,ia)).',Sdiff)); %can't we just make kernel a vector and use kernel(deltaK) ? , %saving kernelConj reduces number of times 'conj.m' has to be called, but adds another variable, which is worse ? %is it bad to have such a big argument in kron ? or should i save it and make 2 lines, depending on your units for kernel, you might need to factor the argument by 1/hbar. The reshaping afterwards must be redundant, we must be able to use kron in such a way that the answer ends up in matrix form ,
I_mkEnd(:,1+deltaK)=exp(-kron((kernelEnd(1+deltaK)*Svector(1,ib)-kernelEndConj(1+deltaK)*Svector(1,ia)).',Sdiff)); %can't we just make kernel a vector and use kernel(deltaK) ? , %saving kernelConj reduces number of times 'conj.m' has to be called, but adds another variable, which is worse ? %is it bad to have such a big argument in kron ? or should i save it and make 2 lines, depending on your units for kernel, you might need to factor the argument by 1/hbar. The reshaping afterwards must be redundant, we must be able to use kron in such a way that the answer ends up in matrix form ,
I_mkTDend(:,1+deltaK)=exp(-kron((kernelTDend(1+deltaK)*Svector(1,ib)-kernelTDendConj(1+deltaK)*Svector(1,ia)).',Sdiff)); %can't we just make kernel a vector and use kernel(deltaK) ? , %saving kernelConj reduces number of times 'conj.m' has to be called, but adds another variable, which is worse ? %is it bad to have such a big argument in kron ? or should i save it and make 2 lines, depending on your units for kernel, you might need to factor the argument by 1/hbar. The reshaping afterwards must be redundant, we must be able to use kron in such a way that the answer ends up in matrix form ,
end %kernel(1)=eta_kk, kernel(2)=eta_{k+1,k}
%% 4.1 Calculation of I tensors with N identical baths
for jj=2:Nbath
Svector2=Svectors(Nbath+1-jj,:); %relationship between Svector and Svector2
Sdiff2=(kron(Svector2,ones(1,M))-kron(ones(1,M),Svector2))';
Ij_00=expand(exp(-Sdiff2.*(kernelEnd(1)*Svector2(1,ib)-kernelEndConj(1)*Svector2(1,ia)).'),[M2,1]);
Ij_mk=zeros(M2^2,deltaKmax+1);Ij_mkEnd=Ij_mk;Ij_mkTD=Ij_mk;Ij_mkTDend=Ij_mk;
Ij_mk(:,1)=kron(ones(M2,1),exp(-Sdiff2.*(kernel(1)*Svector2(1,ib)-kernelConj(1)*Svector2(1,ia)).'));
Ij_mkEnd(:,1)=kron(ones(M2,1),exp(-Sdiff2.*(kernelEnd(1)*Svector2(1,ib)-kernelEndConj(1)*Svector2(1,ia)).'));
for deltaK=1:deltaKmax
Ij_mk(:,1+deltaK)=exp(-kron((kernel(1+deltaK)*Svector2(1,ib)-kernelConj(1+deltaK)*Svector2(1,ia)).',Sdiff2));
Ij_mkTD(:,1+deltaK)=exp(-kron((kernelTD(1+deltaK)*Svector2(1,ib)-kernelTDConj(1+deltaK)*Svector2(1,ia)).',Sdiff2));
Ij_mkEnd(:,1+deltaK)=exp(-kron((kernelEnd(1+deltaK)*Svector2(1,ib)-kernelEndConj(1+deltaK)*Svector2(1,ia)).',Sdiff2));
Ij_mkTDend(:,1+deltaK)=exp(-kron((kernelTDend(1+deltaK)*Svector2(1,ib)-kernelTDendConj(1+deltaK)*Svector2(1,ia)).',Sdiff2));
end %kernel(1)=eta_kk, kernel(2)=eta_{k+1,k}
I_00=I_00.*Ij_00;
I_mk=I_mk.*Ij_mk;
I_mkTD=I_mkTD.*Ij_mkTD;
I_mkEnd(:,1)=I_mkEnd(:,1).*Ij_mkEnd(:,1);
I_mkTDend=I_mkTDend.*Ij_mkTDend;
end
%% 5. Propagation of rho for the first deltaKmax timesteps
A=K(:,1).*I_mkTD(:,1+1).*I_mk(:,1).*I_00.*expand(rho(:,1),[M2,1]); %I_mkTD=I_k0,k=1 I_mk=I_kk, k=1 , I_00=I_NN,k=0
Aend=K(:,1).*I_mkTDend(:,1+1).*I_mkEnd(:,1).*I_00.*expand(rho(:,1),[M2,1]); %I_mkTD=I_N0,N=1 I_mkEnd=I_NN, k=1 , I_00=I_NN,N=0
%K(:,1)=[]; % only for time-dependent system Hamiltonians
rho(:,2)=sum(reshape(Aend,M2,M2).'); Aend=[];
indices=uint32(npermutek(cast(1:M2,'single'),1+1)); %makes 1:4 single precision. One can make them int(8) but then you'd have to use Jan simons's thing (or you could use Matt Fig's MEX, since you're storing it anyway)
for J=2:deltaKmax %could go to deltaKmax-1 and incorporate the deltaKmax case into the next forloop, but the former way uses I_mkTD and the latter does not.
indices=horzcat(expand(indices,[M2,1]),repmat((1:M2)',size(indices,1),1));% Making 1:M single precision might help
A=(expand(A,[M2,1]));
%A=A.*repmat(K_k,M2^(J-1),1); % or just read indices like in below lines, whatever's faster [this is implemented in line below because it's needed for OFPF]
A=A.*K((indices(:,end-1)-1)*M2+indices(:,end),1); % %Or just make column of K = J, and forget about the deleting of columns.
K(:,1)=[];
Aend=A;
for k=0:J-1 % this shouldn't be redone each time, since these lines have no dependence on J
A=A.*I_mk((indices(:,end-k)-1)*M2+indices(:,end),k+1);
Aend=Aend.*I_mkEnd((indices(:,end-k)-1)*M2+indices(:,end),k+1);
end
A=A.*I_mkTD((indices(:,end-J)-1)*M2+indices(:,end),J+1); %the k=J case for forloop above. uses eta_k0
Aend=Aend.*I_mkTDend((indices(:,end-J)-1)*M2+indices(:,end),J+1); %the k=J case for forloop above. uses eta_N0
%whos('A','Aend','indices')
%weakPaths=find(abs(A)<tol); %in 2001 Sim, it's <=
%A(weakPaths)=0;indices(weakPaths,:)=0; % might be better to just remove these rows completely, and then calculate rho using information in the leftover INDICES array. If you remove rows of A, you have to also remove rows of indices to allow A.*I_mk(indices) to work
%A=sparse(A);indices=sparse(indices); %now there's a problem with indices=horzcat.... above. Not only does size(indices,1) have to be changed into length(find(indices(:,1)), but expand will also expand the 0's even though you don't want that.
%A(weakPaths)=[];indices(weakPaths,:)=[];weakPaths=[]; %might be better to just remove these rows completely, and then calculate rho using information in the leftover INDICES array. If you remove rows of A, you have to also remove rows of indices to allow A.*I_mk(indices) to work
%rho(:,J+1)=sum(reshape(A,M2,M2^(J)).'); %watch out, ' is conjugate transpose, we only want to transpose
for Q=1:size(rho,1)
rho(Q,J+1)=sum(Aend(indices(:,end)==Q)); %do as array function ?
end
end
%% 6. Propagation of rho for the timesteps after deltaKmax
tic;
if finalPoint>deltaKmax
if strcmpi(cpuORgpu,'GPU');gpuIndex=gpuDevice(1);end
KtimesIpermanent=K((indices(:,end-1)-1)*M2+indices(:,end),1); %predefine ?
KtimesIpermanentEnd=KtimesIpermanent;
%whos
for k=0:deltaKmax % it's probably faster if this tensor is just built as A is in the above forloop ... in fact it seems reading indices is slow, so perhaps even the previous iterations should be done like the tensor propagator below:
KtimesIpermanent=KtimesIpermanent.*I_mk((indices(:,end-k)-1)*M2+indices(:,end),k+1); %when k=deltaKmax, we're using I_mk(:,1+deltaKmax) which used kernel(1+deltaK) which uses eta 5
KtimesIpermanentEnd=KtimesIpermanentEnd.*I_mkEnd((indices(:,end-k)-1)*M2+indices(:,end),k+1);%when k=deltaKmax, we're using I_mkEnd(:,1+deltaKmax) which used kernelEnd(1+deltaK) which uses eta 3
end
indices=[]; %clear('indices') %when not using parfor
KtimesIpermanent=reshape(KtimesIpermanent,M2,[]);
KtimesIpermanentEnd=reshape(KtimesIpermanentEnd,M2,[]);
if strcmpi(cpuORgpu,'GPU')
KtimesIpermanent=gpuArray(KtimesIpermanent);KtimesIpermanentEnd=gpuArray(KtimesIpermanentEnd);A=gpuArray(A);rho=gpuArray(rho(1,:));
end
for J=deltaKmax+1:finalPoint
Aend=reshape(bsxfun(@times,reshape(sum(reshape(A,[],M2),2),1,[]),KtimesIpermanentEnd),[],1); %see profile.txt for discussion about speed
A=reshape(bsxfun(@times,reshape(sum(reshape(A,[],M2),2),1,[]),KtimesIpermanent),[],1); %could be sped up by using some of the calculations in line above
Aend=reshape(Aend,M2,[]); % for some reason, switching the M2 and [] and removing the ,2 in the line below alters the beginning
if or(strcmpi(allPointsORjustFinalPoint,'allPoints'),and(strcmpi(allPointsORjustFinalPoint,'justFinalPoint'),J==finalPoint));
switch wholeDensityMatrixOrJustDiagonals
case 'justDiagonals'
rho(diagonals(1:M-1),J+1)=sum(Aend(diagonals(1:M-1),:),2); % all diagonals but the last
rho(diagonals(end),J+1)=1-sum(rho(:,J+1)); % last diagonal obtained by trace(rho)=1
otherwise
rho(upperTriangle(1:end-1),J+1)=sum(Aend(upperTriangle(1:end-1),:),2); % all of the upper-right triangle of the matrix, except for the last diagonal
rho(diagonals(end),J+1)=1-sum(rho(diagonals(1:end-1),J+1)); % last diagonal obtained by trace(rho)=1
end
disp(['Time step ' num2str(J) '/' num2str(finalPoint) ' has completed successfully after ' num2str(round(toc)) ' seconds! L=' num2str(length(find(A)))]);
end
end
end
elapsedTime=toc;
if strcmpi(cpuORgpu,'GPU')
rho=gather(rho);reset(gpuIndex);
end
%% SUBROUTINE 1: EXAPND.M
function B = expand(A,S) % Compact version of: http://www.mathworks.co.uk/matlabcentral/fileexchange/24536-expand
SA = size(A); % Get the size (and number of dimensions) of input.
if length(SA)~=length(S);error('Length of size vector must equal ndims(A). See help.')
elseif any(S~=floor(S));error('The size vector must contain integers only. See help.')
end
for ii = length(SA):-1:1
H = zeros(SA(ii)*S(ii),1); % One index vector into A for each dim.
H(1:S(ii):SA(ii)*S(ii)) = 1; % Put ones in correct places.
T{ii} = cumsum(H); % Cumsumming creates the correct order.
end
B = A(T{:}); % Feed the indices into A.
%% SUBROUTINE 2: NPERMUTEK.M
function [Matrix,Index] = npermutek(N,K) % Compact version of: http://www.mathworks.co.uk/matlabcentral/fileexchange/11462-npermutek
if isempty(N) || K == 0
Matrix = [];Index = Matrix; return
elseif floor(K) ~= K || K<0 || ~isreal(K) || numel(K)~=1;error('Second argument should be a real positive integer. See help.')
end
LN = numel(N); % Used in calculating the Matrix and Index.
if K==1;Matrix = N(:);Index = (1:LN).'; return
elseif LN==1;Index = ones(K,1);Matrix = N(1,Index); return
end
CLS = class(N);
if ischar(N); CLS = 'double';
end
L = LN^K; % This is the number of rows the outputs will have.
Matrix = zeros(L,K,CLS); % Preallocation.
D = diff(N(1:LN)); % Use this for cumsumming later.
LD = length(D); % See comment on LN.
VL = [-sum(D) D].'; % These values will be put into Matrix.
TMP = VL(:,ones(L/LN,1,CLS)); % Instead of repmatting.
Matrix(:,K) = TMP(:); % We don't need to do two these in loop.
Matrix(1:LN^(K-1):L,1) = VL; % The first column is the simplest.
if nargout==1
for ii = 2:K-1
ROWS = 1:LN^(ii-1):L; % Indices into the rows for this col.
TMP = VL(:,ones(length(ROWS)/(LD+1),1,CLS)); % Match dimension.
Matrix(ROWS,K-ii+1) = TMP(:); % Build it up, insert values.
end
else
Index = zeros(L,K,CLS); % Preallocation.
VL2 = ones(size(VL),CLS); % Follow the logic in VL above.
VL2(1) = 1-LN; % These are the drops for cumsum.
TMP2 = VL2(:,ones(L/LN,1,CLS)); % Instead of repmatting.
Index(:,K) = TMP2(:); % We don't need to do two these in loop.
Index(1:LN^(K-1):L,1) = 1;
for ii = 2:K-1
ROWS = 1:LN^(ii-1):L; % Indices into the rows for this col.
F = ones(length(ROWS)/(LD+1),1,CLS); % Don't do it twice!
TMP = VL(:,F); % Match dimensions.
TMP2 = VL2(:,F);
Matrix(ROWS,K-ii+1) = TMP(:); % Build them up, insert values.
Index(ROWS,K-ii+1) = TMP2(:);
end
Index(1,:) = 1; % The first row must be 1 for proper cumsumming.
Index = cumsum(Index); % This is the time hog.
end
Matrix(1,:) = N(1);Matrix = cumsum(Matrix);
if ischar(N);Matrix = char(Matrix);end