-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_latent_rdm_save.py
47 lines (39 loc) · 1.17 KB
/
test_latent_rdm_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from options import TestOptions
from datasets import dataset_single
from model import SAVI2I
from saver import save_imgs, save_concat_imgs
import os
def main():
# parse options
parser = TestOptions()
opts = parser.parse()
# data loader
print('\n--- load dataset ---')
dataset = dataset_single(opts, opts.index_s)
loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1)
# model
print('\n--- load model ---')
model = SAVI2I(opts)
model.setgpu(opts.gpu)
model.resume(opts.resume, train=False)
model.eval()
# directory
result_dir = os.path.join(opts.result_dir, opts.name)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
# test
print('\n--- testing ---')
for idx, img in enumerate(loader):
#break
img = img.cuda()
for idx2 in range(opts.num):
with torch.no_grad():
index = ord(opts.index_t) - ord('A')
imgs, names = model.test_interpolate_latent_save_rdm(img, index)
dir = os.path.join(result_dir, '{}'.format(idx), '{}'.format(idx2))
os.makedirs(dir, exist_ok=True)
save_imgs(imgs, names, dir)
return
if __name__ == '__main__':
main()