-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
Copy pathopenvino-face-detection.cpp
376 lines (330 loc) · 14.7 KB
/
openvino-face-detection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// License: Apache 2.0. See LICENSE file in root directory.
// Copyright(c) 2020 Intel Corporation. All Rights Reserved.
// NOTE: This file will be compiled only with INTEL_OPENVINO_DIR pointing to an OpenVINO install!
#include "post-processing-filters-list.h"
#include "post-processing-worker-filter.h"
#include <rs-vino/object-detection.h>
#include <rs-vino/age-gender-detection.h>
#include <rs-vino/detected-object.h>
#include <cv-helpers.hpp>
#include <rsutils/string/from.h>
namespace openvino = InferenceEngine;
/* We need to extend the basic detected_object to include facial characteristics
*/
class detected_face : public openvino_helpers::detected_object
{
float _age;
float _male_score, _female_score; // cumulative - see update_gender()
public:
using ptr = std::shared_ptr< detected_face >;
explicit detected_face( size_t id,
cv::Rect const& location,
float male_prob,
float age,
cv::Rect const& depth_location = cv::Rect{},
float intensity = 1,
float depth = 0 )
: detected_object( id, std::string(), location, depth_location, intensity, depth )
, _age( age )
, _male_score( male_prob > 0.5f ? male_prob - 0.5f : 0.f )
, _female_score( male_prob > 0.5f ? 0.f : 0.5f - male_prob )
{
}
void update_age( float value )
{
_age = (_age == -1) ? value : 0.95f * _age + 0.05f * value;
}
void update_gender( float value )
{
if( value >= 0 )
{
if( value > 0.5 )
_male_score += value - 0.5f;
else
_female_score += 0.5f - value;
}
}
int get_age() const { return static_cast< int >( std::floor( _age + 0.5f )); }
bool is_male() const { return( _male_score > _female_score ); }
bool is_female() const { return !is_male(); }
};
/* Define a filter that will perform facial detection using OpenVINO
*/
class openvino_face_detection : public post_processing_worker_filter
{
InferenceEngine::Core _ie;
openvino_helpers::object_detection _face_detector;
openvino_helpers::age_gender_detection _age_detector;
openvino_helpers::detected_objects _faces;
size_t _id = 0;
std::shared_ptr< atomic_objects_in_frame > _objects;
public:
openvino_face_detection( std::string const & name )
: post_processing_worker_filter( name )
/*
This face detector is from the OpenCV Model Zoo:
https://github.com/opencv/open_model_zoo/blob/master/models/intel/face-detection-adas-0001/description/face-detection-adas-0001.md
*/
, _face_detector(
"face-detection-adas-0001.xml",
0.5, // Probability threshold
false ) // Not async
/*
*/
, _age_detector(
"age-gender-recognition-retail-0013.xml",
false ) // Not async
{
}
~openvino_face_detection()
{
// Complete background worker to ensure it releases the instance's resources in controlled manner
release_background_worker();
}
public:
void start( rs2::subdevice_model & model ) override
{
post_processing_worker_filter::start( model );
_objects = model.detected_objects;
}
private:
void worker_start() override
{
LOG(INFO) << "Loading CPU extensions...";
std::string const device_name{ "CPU" };
// Cpu extensions library was removed in OpenVINO >= 2020.1, extensions were merged into the cpu plugin.
#ifdef OPENVINO2019
_ie.AddExtension(std::make_shared< openvino::Extensions::Cpu::CpuExtensions >(), device_name);
#endif
_face_detector.load_into( _ie, device_name);
_age_detector.load_into( _ie, device_name);
}
/*
Returns the "intensity" of the face in the picture, and calculates the distance to it, ignoring
Invalid depth pixels or those outside a range that would be appropriate for a face.
*/
static float calc_face_attrs(
const rs2::video_frame & cf,
const rs2::depth_frame & df,
cv::Rect const & depth_bbox,
float * p_mean_depth )
{
uint16_t const * const pdw = reinterpret_cast<const uint16_t*>( df.get_data() );
uint8_t const * const pcb = reinterpret_cast<uint8_t*>(const_cast<void*>( cf.get_data() ));
float const depth_scale = df.get_units();
int const depth_width = df.get_width();
int const color_width = cf.get_width();
int const color_bpp = cf.get_bytes_per_pixel();
int const top = depth_bbox.y;
int const bot = top + depth_bbox.height;
int const left = depth_bbox.x;
int const right = left + depth_bbox.width;
// Find a center point that has a depth on it
int center_x = (left + right) / 2;
int center_index = (top + bot) / 2 * depth_width + center_x;
for( int d = 1; !pdw[center_index] && d < 10; ++d )
{
if( pdw[center_index + d] ) center_index += d;
if( pdw[center_index - d] ) center_index -= d;
if( pdw[center_index + depth_width] ) center_index += depth_width;
if( pdw[center_index - depth_width] ) center_index -= depth_width;
}
if( !pdw[center_index] )
{
if( p_mean_depth )
*p_mean_depth = 0;
return 1;
}
float const d_center = pdw[center_index] * depth_scale;
// Set a "near" and "far" threshold -- anything closer or father, respectively,
// would be deemed not a part of the face and therefore background:
float const d_far_threshold = d_center + 0.2f;
float const d_near_threshold = std::max( d_center - 0.5f, 0.001f );
// Average human head diameter ~= 7.5" or ~19cm
// Assume that the center point is in the front of the face, so the near threshold
// should be very close to that, while the far farther...
float total_luminance = 0;
float total_depth = 0;
unsigned pixel_count = 0;
#pragma omp parallel for schedule(dynamic) //Using OpenMP to try to parallelise the loop
for( int y = top; y < bot; ++y )
{
auto depth_pixel_index = y * depth_width + left;
for( int x = left; x < right; ++x, ++depth_pixel_index )
{
// Get the depth value of the current pixel
auto d = depth_scale * pdw[depth_pixel_index];
// Check if the depth value is invalid (<=0) or greater than the threashold
if( d >= d_near_threshold && d <= d_far_threshold )
{
// Calculate the offset in other frame's buffer to current pixel
auto const coffset = depth_pixel_index * color_bpp;
auto const pc = &pcb[coffset];
// Using RGB...
auto r = pc[0], g = pc[1], b = pc[2];
total_luminance += 0.2989f * r + 0.5870f * g + 0.1140f * b; // CCIR 601 -- see https://en.wikipedia.org/wiki/Luma_(video)
++pixel_count;
// And get a mean depth, too
total_depth += d;
}
}
}
if( p_mean_depth )
*p_mean_depth = pixel_count ? total_depth / pixel_count : 0;
return pixel_count ? total_luminance / pixel_count : 1;
}
void worker_body( rs2::frame f ) override
{
auto fs = f.as< rs2::frameset >();
auto cf = f;
rs2::depth_frame df = rs2::frame{};
if (fs)
{
cf = fs.get_color_frame();
df = fs.get_depth_frame();
}
if ((!fs && f.get_profile().stream_name() != "Color") || (fs && !cf))
{
_objects->clear();
return;
}
// A color video frame is the minimum we need for detection
if( cf.get_profile().format() != RS2_FORMAT_RGB8 )
{
LOG(ERROR) << get_context(fs) << "color format must be RGB8; it's " << cf.get_profile().format();
return;
}
// A depth frame is optional: if not enabled, we won't get it, and we simply won't provide depth info...
if (df && df.get_profile().format() != RS2_FORMAT_Z16)
{
LOG(ERROR) << get_context(fs) << "depth format must be Z16; it's " << df.get_profile().format();
return;
}
try
{
rs2_intrinsics color_intrin, depth_intrin;
rs2_extrinsics color_extrin, depth_extrin;
get_trinsics( cf, df, color_intrin, depth_intrin, color_extrin, depth_extrin );
objects_in_frame objects;
cv::Mat image( color_intrin.height, color_intrin.width, CV_8UC3, const_cast<void *>(cf.get_data()), cv::Mat::AUTO_STEP );
_face_detector.enqueue( image );
_face_detector.submit_request();
auto results = _face_detector.fetch_results();
openvino_helpers::detected_objects prev_faces { std::move( _faces ) };
_faces.clear();
for( auto && result : results )
{
cv::Rect rect = result.location & cv::Rect( 0, 0, image.cols, image.rows );
detected_face::ptr face = std::dynamic_pointer_cast< detected_face >(
openvino_helpers::find_object( rect, prev_faces ));
try
{
// Use a mean of the face intensity to help identify faces -- if the intensity changes too much,
// it's not the same face...
float depth = 0, intensity = 1;
cv::Rect depth_rect;
if( df )
{
rs2::rect depth_bbox = project_rect_to_depth(
rs2::rect { float( rect.x ), float( rect.y ), float( rect.width ), float( rect.height ) },
df,
color_intrin, depth_intrin, color_extrin, depth_extrin
);
// It is possible to get back an invalid rect!
if( depth_bbox == depth_bbox.intersection( rs2::rect { 0.f, 0.f, float( depth_intrin.width ), float( depth_intrin.height) } ) )
{
depth_rect = cv::Rect( int( depth_bbox.x ), int( depth_bbox.y ), int( depth_bbox.w ), int( depth_bbox.h ) );
intensity = calc_face_attrs( cf, df, depth_rect, &depth );
}
else
{
LOG(DEBUG) << get_context(fs) << "depth_bbox is no good!";
}
}
else
{
intensity = openvino_helpers::calc_intensity( image( rect ) );
}
float intensity_change = face ? std::abs( intensity - face->get_intensity() ) / face->get_intensity() : 1;
float depth_change = ( face && face->get_depth() ) ? std::abs( depth - face->get_depth() ) / face->get_depth() : 0;
if( intensity_change > 0.07f || depth_change > 0.2f )
{
// Figure out the age for this new face
float age = 0, maleProb = 0.5;
// Enlarge the bounding box around the detected face for more robust operation of face analytics networks
cv::Mat face_image = image(
openvino_helpers::adjust_face_bbox( rect, 1.4f )
& cv::Rect( 0, 0, image.cols, image.rows ) );
_age_detector.enqueue( face_image );
_age_detector.submit_request();
_age_detector.wait();
auto age_gender = _age_detector[0];
age = age_gender.age;
maleProb = age_gender.maleProb;
// Note: we may want to update the gender/age for each frame, as it may change...
face = std::make_shared< detected_face >( _id++, rect, maleProb, age, depth_rect, intensity, depth );
}
else
{
face->move( rect, depth_rect, intensity, depth );
}
_faces.push_back( face );
}
catch( ... )
{
LOG(ERROR) << get_context(fs) << "Unhandled exception!!!";
}
}
for( auto && object : _faces )
{
auto face = std::dynamic_pointer_cast<detected_face>( object );
cv::Rect const & loc = face->get_location();
rs2::rect bbox { float( loc.x ), float( loc.y ), float( loc.width ), float( loc.height ) };
rs2::rect normalized_color_bbox = bbox.normalize( rs2::rect { 0, 0, float(color_intrin.width), float(color_intrin.height) } );
rs2::rect normalized_depth_bbox = normalized_color_bbox;
if( df )
{
cv::Rect const & depth_loc = face->get_depth_location();
rs2::rect depth_bbox { float( depth_loc.x ), float( depth_loc.y ), float( depth_loc.width ), float( depth_loc.height ) };
normalized_depth_bbox = depth_bbox.normalize( rs2::rect { 0, 0, float( df.get_width() ), float( df.get_height() ) } );
}
objects.emplace_back(
face->get_id(),
rsutils::string::from() << (face->is_male() ? u8"\uF183" : u8"\uF182") << " " << face->get_age(),
normalized_color_bbox,
normalized_depth_bbox,
face->get_depth()
);
}
std::lock_guard< std::mutex > lock( _objects->mutex );
if( is_pb_enabled() )
{
if( _objects->sensor_is_on )
_objects->swap( objects );
}
else
{
_objects->clear();
}
}
catch( const std::exception & e )
{
LOG(ERROR) << get_context(fs) << e.what();
}
catch( ... )
{
LOG(ERROR) << get_context(fs) << "Unhandled exception caught in openvino_face_detection";
}
}
void on_processing_block_enable( bool e ) override
{
post_processing_worker_filter::on_processing_block_enable( e );
if( !e )
{
// Make sure all the objects go away!
std::lock_guard< std::mutex > lock( _objects->mutex );
_objects->clear();
}
}
};
static auto it = post_processing_filters_list::register_filter< openvino_face_detection >( "Face Detection : OpenVINO" );