forked from lukasturcani/chem_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize.py
248 lines (194 loc) · 7.62 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""
Optimizes molecules held in an ``stk`` ``.json`` dump file.
This script uses ``MacroModel`` to optimize the molecules.
``MacroModel`` is run using :func:`stk.macromodel_opt`.
This script is run as a command line program. See::
$ python optimize.py --help
To run this file a second file with the optimization parameters must
be created. This will be a ``Python`` file which defines two
dictionaries, called `settings` and `md`. These correspond to the
identically named arguments of :func:`stk.macromodel_opt`. For
example
.. code-block:: python
# settings_file.py
settings = {
'restricted': False,
'timeout': 0,
'force_field': 16,
'max_iter': 2500,
'gradient': 0.05,
'md': True
}
md = {
'timeout': 0,
'force_field': 16,
'temp': 700,
'confs': 20,
'time_step': 1.0,
'eq_time': 10,
'sim_time': 200,
'max_iter': 2500,
'gradient': 0.05
}
``optimize.py`` can then be run::
$ python optimize.py unopt_pop.json settings_file.py opt_pop.json
/opt/schrodinger2017-2
"""
from stk import Population, Molecule, macromodel_opt
import multiprocessing as mp
from functools import wraps
import os
import argparse
from uuid import uuid4
from os.path import join
from datetime import datetime
import logging
import psutil
class Guard:
"""
Wraps an optimization function.
This wrapper modifies the function so that its return value is the
macromolecule it optimizes. It also prevents the function from
raising errors as this can causes multiprocessing to hang.
Attributes
----------
mm_path : :class:`str`
The path to the Schrodinger installation. For example
``'/opt/schrodinger2017-2'``.
settings : :class:`dict`
A :class:`dict` which holds the arguments for the optimization
function. Passed to the `settings` argument of the optimization
function.
md : :class:`dict`
A :class:`dict` which holds the arguments for the MD run of
the optimization function. Passed to the `md` argument of the
optimization function.
dmp : :class:`bool`
If ``True``, a ``.json`` dump file is made for each molecule
after it is optimized.
"""
def __init__(self, func, mm_path, settings, md, dmp):
"""
Initializes a guarded optimization function.
Parameters
----------
func : :class:`function`
The optimization function.
mm_path : :class:`str`
The path to the Schrodinger installation. For example
``'/opt/schrodinger2017-2'``.
settings : :class:`dict`
A :class:`dict` which holds the arguments for the
optimization function. Passed to the `settings` argument of
the optimization function.
md : :class:`dict`
A :class:`dict` which holds the arguments for the MD run of
the optimization function. Passed to the `md` argument of
the optimization function.
dmp : :class:`bool`
If ``True``, a ``.json`` dump file is made for each
molecule after it is optimized.
"""
self.mm_path = mm_path
self.settings = settings
self.md = md
self.dmp = dmp
wraps(func)(self)
def __call__(self, macro_mol):
"""
Runs the optimization function.
Parameters
----------
macro_mol : :class:`stk.Molecule`
The molecule to be optimized.
Returns
-------
:class:`stk.Molecule`
The optimized molecule. Returns ``None`` when the
optimization fails.
"""
try:
self.__wrapped__(macro_mol,
self.mm_path,
self.settings,
self.md)
except Exception as ex:
logging.error(f'Error with {macro_mol.name}.', exc_info=True)
macro_mol = None
finally:
if self.dmp:
macro_mol.dump(join(self.dmp,
'{}.json'.format(uuid4().int)))
return macro_mol
def main():
logging.basicConfig(level=0)
# Set up the command line parser.
parser = argparse.ArgumentParser()
parser.add_argument(
'population_file',
help=('A .json population dump file. The population'
' holds the molecules which need to be optimized.'))
parser.add_argument(
'settings_file',
help=('A ``.py`` file which defines 2 dictionaries, '
'"settings" and "md". These hold the values for the '
'equally named arguments in the optimization '
'function.'))
parser.add_argument(
'output_file',
help=('The path to a .json dump file. This will hold the'
' population with the optimized molecules.'))
parser.add_argument(
'mm_path',
help='The path to the Schrodinger installation.')
parser.add_argument(
'-w', '--write',
help=('Write .mol files of all optimized molecules'
' into directory WRITE.'))
parser.add_argument(
'-d', '--dump',
help=('After optimizing, a .json file of the molecule'
' is written to the directory DUMP.'))
parser.add_argument(
'-n', '--num_cores',
help='The number of cores to use.',
type=int,
default=psutil.cpu_count())
args = parser.parse_args()
# Load the data in the settings file.
with open(args.settings_file, 'r') as f:
settings_content = {}
exec(f.read(), settings_content)
if args.dump and not os.path.exists(args.dump):
os.mkdir(args.dump)
opt_func = Guard(macromodel_opt,
args.mm_path,
settings_content['settings'],
settings_content['md'],
args.dump)
with mp.Pool(args.num_cores) as pool:
pop = Population.load(args.population_file, Molecule.from_dict)
results = [r for r in pool.map(opt_func, pop) if r is not None]
if args.write:
for i, m in enumerate(results):
m.write(join(args.write, f'{i}.mol'))
rpop = Population(*results)
rpop.dump(args.output_file)
if len(pop) != len(rpop):
logging.warning(('Input and output population sizes do not match. '
'This means some molecules were not optimized.'))
# Write a log of the settings to a file.
log_file = os.path.splitext(args.output_file)[0] + '.log'
with open(log_file, 'a') as f:
log_title = 'Optimization log - {}.'.format(datetime.now())
f.write('='*len(log_title) + '\n')
f.write(log_title + '\n')
f.write('='*len(log_title) + '\n')
f.write(f'schrodinger path: {args.mm_path}\n')
f.write(f'Input file: "{args.population_file}"\n')
f.write(f'Output file: "{args.output_file}"\n')
f.write('Function: macromodel_opt()\n')
f.write('settings = {}\n'.format(settings_content['settings']))
f.write('md = {}\n\n'.format(settings_content['md']))
if __name__ == '__main__':
main()