-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
54 lines (45 loc) · 1.42 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import os
from pydantic import BaseSettings
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
class Config(BaseSettings):
dataset_type: str = "udacity"
batch_size: int = 64
num_workers: int = max(os.cpu_count(), 1)
shuffle: bool = True
train_split_size: float = 0.75
test_split_size: float = 0.25
resize: tuple = (66, 200)
epochs_count: int = 45
optimizer: str = "Adam"
learning_rate: float = 1e-3
weight_decay: float = 1e-5
momentum: float = 0.9
save_model: bool = True
root_path: str = "./"
model_path: str = "model.pt"
optimizer_path: str = "optimizer.pt"
loss_path: str = "loss.pt"
device: str = get_device()
mean: list = [0.485, 0.456, 0.406]
std: list = [0.229, 0.224, 0.225]
epsilon: float = 0.001
early_stopping_patience: int = 10
early_stopping_min_delta: float = 0.0005
cross_validation_folds: int = 4
scheduler_type: str = "multistep"
scheduler_multistep_milestones: list = [8, 12, 16, 20, 24]
scheduler_step_size: int = 35
scheduler_gamma: float = 0.5
is_saving_enabled: bool = True
is_loss_logging_enabled: bool = True
is_image_logging_enabled: bool = False
is_learning_rate_logging_enabled: bool = True
is_grad_avg_logging_enabled: bool = False
config = Config()