diff --git a/src/covariance.jl b/src/covariance.jl index a4bb283..6bf5d0c 100644 --- a/src/covariance.jl +++ b/src/covariance.jl @@ -57,7 +57,7 @@ Base.range(cov::Covariance) = range(cov.γ) Scale metric ball of covariance `cov` with strictly positive scaling factor `s`. """ -scale(cov::Cov, s::Real) where {Cov <: Covariance} = Cov(scale(cov.γ, s)) +scale(cov::Cov, s::Real) where {Cov<:Covariance} = Cov(scale(cov.γ, s)) """ cov(g₁, g₂) diff --git a/test/nesting.jl b/test/nesting.jl index e2d0922..377500d 100644 --- a/test/nesting.jl +++ b/test/nesting.jl @@ -45,7 +45,7 @@ γ = GaussianVariogram() + ExponentialVariogram() @test GeoStatsFunctions.returntype(γ, Point(0.0, 0.0, 0.0), Point(0.0, 0.0, 0.0)) == Float64 γ = GaussianVariogram(sill=1.0f0, range=1.0f0, nugget=0.1f0) - @test GeoStatsFunctions.returntype(γ, Point(0f0, 0f0, 0f0), Point(0f0, 0f0, 0f0)) == Float32 + @test GeoStatsFunctions.returntype(γ, Point(0.0f0, 0.0f0, 0.0f0), Point(0.0f0, 0.0f0, 0.0f0)) == Float32 # nested model with matrix coefficients C₁ = [1.0 0.5; 0.5 2.0]