-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtrain.py
312 lines (262 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import pickle
import os
import time
import shutil
import torch
import data
from vocab import Vocabulary # NOQA
from model import VSRN
from evaluation import i2t, t2i, AverageMeter, LogCollector, encode_data
import logging
import tensorboard_logger as tb_logger
import argparse
def main():
# Hyper Parameters
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='/data',
help='path to datasets')
parser.add_argument('--data_name', default='precomp',
help='{coco,f8k,f30k,10crop}_precomp|coco|f8k|f30k')
parser.add_argument('--vocab_path', default='./vocab/',
help='Path to saved vocabulary pickle files.')
parser.add_argument('--margin', default=0.2, type=float,
help='Rank loss margin.')
parser.add_argument('--num_epochs', default=30, type=int,
help='Number of training epochs.')
parser.add_argument('--batch_size', default=128, type=int,
help='Size of a training mini-batch.')
parser.add_argument('--word_dim', default=300, type=int,
help='Dimensionality of the word embedding.')
parser.add_argument('--embed_size', default=2048, type=int,
help='Dimensionality of the joint embedding.')
parser.add_argument('--grad_clip', default=2., type=float,
help='Gradient clipping threshold.')
parser.add_argument('--crop_size', default=224, type=int,
help='Size of an image crop as the CNN input.')
parser.add_argument('--num_layers', default=1, type=int,
help='Number of GRU layers.')
parser.add_argument('--learning_rate', default=.0002, type=float,
help='Initial learning rate.')
parser.add_argument('--lr_update', default=15, type=int,
help='Number of epochs to update the learning rate.')
parser.add_argument('--workers', default=10, type=int,
help='Number of data loader workers.')
parser.add_argument('--log_step', default=10, type=int,
help='Number of steps to print and record the log.')
parser.add_argument('--val_step', default=500, type=int,
help='Number of steps to run validation.')
parser.add_argument('--logger_name', default='runs/runX',
help='Path to save the model and Tensorboard log.')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--max_violation', action='store_true',
help='Use max instead of sum in the rank loss.')
parser.add_argument('--img_dim', default=2048, type=int,
help='Dimensionality of the image embedding.')
parser.add_argument('--finetune', action='store_true',
help='Fine-tune the image encoder.')
parser.add_argument('--cnn_type', default='vgg19',
help="""The CNN used for image encoder
(e.g. vgg19, resnet152)""")
parser.add_argument('--use_restval', action='store_true',
help='Use the restval data for training on MSCOCO.')
parser.add_argument('--measure', default='cosine',
help='Similarity measure used (cosine|order)')
parser.add_argument('--use_abs', action='store_true',
help='Take the absolute value of embedding vectors.')
parser.add_argument('--no_imgnorm', action='store_true',
help='Do not normalize the image embeddings.')
parser.add_argument('--reset_train', action='store_true',
help='Ensure the training is always done in '
'train mode (Not recommended).')
###caption parameters
parser.add_argument(
'--dim_vid',
type=int,
default=2048,
help='dim of features of video frames')
parser.add_argument(
'--dim_hidden',
type=int,
default=512,
help='size of the rnn hidden layer')
parser.add_argument(
"--bidirectional",
type=int,
default=0,
help="0 for disable, 1 for enable. encoder/decoder bidirectional.")
parser.add_argument(
'--input_dropout_p',
type=float,
default=0.2,
help='strength of dropout in the Language Model RNN')
parser.add_argument(
'--rnn_type', type=str, default='gru', help='lstm or gru')
parser.add_argument(
'--rnn_dropout_p',
type=float,
default=0.5,
help='strength of dropout in the Language Model RNN')
parser.add_argument(
'--dim_word',
type=int,
default=300, # 512
help='the encoding size of each token in the vocabulary, and the video.'
)
parser.add_argument(
"--max_len",
type=int,
default=60,
help='max length of captions(containing <sos>,<eos>)')
opt = parser.parse_args()
print(opt)
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
tb_logger.configure(opt.logger_name, flush_secs=5)
# Load Vocabulary Wrapper
vocab = pickle.load(open(os.path.join(
opt.vocab_path, '%s_vocab.pkl' % opt.data_name), 'rb'))
opt.vocab_size = len(vocab)
# Load data loaders
train_loader, val_loader = data.get_loaders(
opt.data_name, vocab, opt.crop_size, opt.batch_size, opt.workers, opt)
# Construct the model
model = VSRN(opt)
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
start_epoch = checkpoint['epoch']
best_rsum = checkpoint['best_rsum']
model.load_state_dict(checkpoint['model'])
# Eiters is used to show logs as the continuation of another
# training
model.Eiters = checkpoint['Eiters']
print("=> loaded checkpoint '{}' (epoch {}, best_rsum {})"
.format(opt.resume, start_epoch, best_rsum))
validate(opt, val_loader, model)
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# Train the Model
best_rsum = 0
for epoch in range(opt.num_epochs):
adjust_learning_rate(opt, model.optimizer, epoch)
# train for one epoch
best_rsum = train(opt, train_loader, model, epoch, val_loader, best_rsum)
# evaluate on validation set
rsum = validate(opt, val_loader, model)
# remember best R@ sum and save checkpoint
is_best = rsum > best_rsum
best_rsum = max(rsum, best_rsum)
save_checkpoint({
'epoch': epoch + 1,
'model': model.state_dict(),
'best_rsum': best_rsum,
'opt': opt,
'Eiters': model.Eiters,
}, is_best, prefix=opt.logger_name + '/')
def train(opt, train_loader, model, epoch, val_loader, best_rsum):
# average meters to record the training statistics
batch_time = AverageMeter()
data_time = AverageMeter()
train_logger = LogCollector()
# switch to train mode
model.train_start()
end = time.time()
for i, train_data in enumerate(train_loader):
# if opt.reset_train:
# Always reset to train mode, this is not the default behavior
model.train_start()
# measure data loading time
data_time.update(time.time() - end)
# make sure train logger is used
model.logger = train_logger
# Update the model
model.train_emb(*train_data)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Print log info
if model.Eiters % opt.log_step == 0:
logging.info(
'Epoch: [{0}][{1}/{2}]\t'
'{e_log}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, e_log=str(model.logger)))
# Record logs in tensorboard
tb_logger.log_value('epoch', epoch, step=model.Eiters)
tb_logger.log_value('step', i, step=model.Eiters)
tb_logger.log_value('batch_time', batch_time.val, step=model.Eiters)
tb_logger.log_value('data_time', data_time.val, step=model.Eiters)
model.logger.tb_log(tb_logger, step=model.Eiters)
# validate at every val_step
if model.Eiters % opt.val_step == 0:
# validate(opt, val_loader, model)
# evaluate on validation set
rsum = validate(opt, val_loader, model)
# remember best R@ sum and save checkpoint
is_best = rsum > best_rsum
best_rsum = max(rsum, best_rsum)
save_checkpoint({
'epoch': epoch + 1,
'model': model.state_dict(),
'best_rsum': best_rsum,
'opt': opt,
'Eiters': model.Eiters,
}, is_best, prefix=opt.logger_name + '/')
return best_rsum
def validate(opt, val_loader, model):
# compute the encoding for all the validation images and captions
img_embs, cap_embs = encode_data(
model, val_loader, opt.log_step, logging.info)
# caption retrieval
(r1, r5, r10, medr, meanr) = i2t(img_embs, cap_embs, measure=opt.measure)
logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1, r5, r10, medr, meanr))
# image retrieval
(r1i, r5i, r10i, medri, meanr) = t2i(
img_embs, cap_embs, measure=opt.measure)
logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1i, r5i, r10i, medri, meanr))
# sum of recalls to be used for early stopping
currscore = r1 + r5 + r1i + r5i
# record metrics in tensorboard
tb_logger.log_value('r1', r1, step=model.Eiters)
tb_logger.log_value('r5', r5, step=model.Eiters)
tb_logger.log_value('r10', r10, step=model.Eiters)
tb_logger.log_value('medr', medr, step=model.Eiters)
tb_logger.log_value('meanr', meanr, step=model.Eiters)
tb_logger.log_value('r1i', r1i, step=model.Eiters)
tb_logger.log_value('r5i', r5i, step=model.Eiters)
tb_logger.log_value('r10i', r10i, step=model.Eiters)
tb_logger.log_value('medri', medri, step=model.Eiters)
tb_logger.log_value('meanr', meanr, step=model.Eiters)
tb_logger.log_value('rsum', currscore, step=model.Eiters)
return currscore
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', prefix=''):
torch.save(state, prefix + filename)
if is_best:
shutil.copyfile(prefix + filename, prefix + 'model_best.pth.tar')
def adjust_learning_rate(opt, optimizer, epoch):
"""Sets the learning rate to the initial LR
decayed by 10 every 30 epochs"""
lr = opt.learning_rate * (0.1 ** (epoch // opt.lr_update))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()