-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathseq2seq_model.py
executable file
·1157 lines (987 loc) · 53.6 KB
/
seq2seq_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import json
import logging
import math
import os
import random
import warnings
from dataclasses import asdict
from multiprocessing import Pool, cpu_count
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from tensorboardX import SummaryWriter
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm.auto import tqdm, trange
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoTokenizer,
BartConfig,
BartForConditionalGeneration,
BartTokenizer,
BlenderbotConfig,
BlenderbotTokenizer,
BlenderbotForConditionalGeneration,
BlenderbotSmallConfig,
# BlenderbotSmallForConditionalGeneration,
BlenderbotSmallTokenizer,
BertConfig,
BertForMaskedLM,
BertModel,
BertTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
RobertaConfig,
RobertaModel,
RobertaTokenizer,
get_linear_schedule_with_warmup,
)
from simpletransformers.config.global_args import global_args
# from modeling_blenderbot_small import BlenderbotSmallForConditionalGeneration
from simpletransformers.config.model_args import Seq2SeqArgs
from seq2seq_utils import Seq2SeqDataset, SimpleSummarizationDataset
try:
import wandb
wandb_available = True
except ImportError:
wandb_available = False
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"auto": (AutoConfig, AutoModel, AutoTokenizer),
"bart": (BartConfig, BartForConditionalGeneration, BartTokenizer),
"bert": (BertConfig, BertModel, BertTokenizer),
"roberta": (RobertaConfig, RobertaModel, RobertaTokenizer),
# "blender": (BlenderbotSmallConfig, BlenderbotSmallForConditionalGeneration, BlenderbotSmallTokenizer),
# "blender-large": (BlenderbotConfig, BlenderbotForConditionalGeneration, BlenderbotTokenizer)
}
class Seq2SeqModel:
def __init__(
self,
encoder_type=None,
encoder_name=None,
decoder_name=None,
encoder_decoder_type=None,
encoder_decoder_name=None,
config=None,
args=None,
use_cuda=True,
cuda_device=-1,
**kwargs
):
"""
Initializes a Seq2SeqModel.
Args:
encoder_type (optional): The type of model to use as the encoder.
encoder_name (optional): The exact architecture and trained weights to use. This may be a Hugging Face Transformers compatible pre-trained model, a community model, or the path to a directory containing model files.
decoder_name (optional): The exact architecture and trained weights to use. This may be a Hugging Face Transformers compatible pre-trained model, a community model, or the path to a directory containing model files.
Must be the same "size" as the encoder model (base/base, large/large, etc.)
encoder_decoder_type (optional): The type of encoder-decoder model. (E.g. bart)
encoder_decoder_name (optional): The path to a directory containing the saved encoder and decoder of a Seq2SeqModel. (E.g. "outputs/") OR a valid BART or MarianMT model.
config (optional): A configuration file to build an EncoderDecoderModel.
args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args.
use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only.
cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default.
**kwargs (optional): For providing proxies, force_download, resume_download, cache_dir and other options specific to the 'from_pretrained' implementation where this will be supplied.
""" # noqa: ignore flake8"
if not config:
# if not ((encoder_name and decoder_name) or encoder_decoder_name) and not encoder_type:
if not ((encoder_name and decoder_name) or encoder_decoder_name):
raise ValueError(
"You must specify a Seq2Seq config \t OR \t"
"encoder_type, encoder_name, and decoder_name OR \t \t"
"encoder_type and encoder_decoder_name"
)
elif not (encoder_type or encoder_decoder_type):
raise ValueError(
"You must specify a Seq2Seq config \t OR \t"
"encoder_type, encoder_name, and decoder_name \t OR \t"
"encoder_type and encoder_decoder_name"
)
self.args = self._load_model_args(encoder_decoder_name)
if isinstance(args, dict):
self.args.update_from_dict(args)
elif isinstance(args, Seq2SeqArgs):
self.args = args
if "sweep_config" in kwargs:
sweep_config = kwargs.pop("sweep_config")
sweep_values = {key: value["value"] for key, value in sweep_config.as_dict().items() if key != "_wandb"}
self.args.update_from_dict(sweep_values)
if self.args.manual_seed:
random.seed(self.args.manual_seed)
np.random.seed(self.args.manual_seed)
torch.manual_seed(self.args.manual_seed)
if self.args.n_gpu > 0:
torch.cuda.manual_seed_all(self.args.manual_seed)
if use_cuda:
if torch.cuda.is_available():
if cuda_device == -1:
self.device = torch.device("cuda")
else:
self.device = torch.device(f"cuda:{cuda_device}")
else:
raise ValueError(
"'use_cuda' set to True when cuda is unavailable."
"Make sure CUDA is available or set `use_cuda=False`."
)
else:
self.device = "cpu"
self.results = {}
if not use_cuda:
self.args.fp16 = False
# config = EncoderDecoderConfig.from_encoder_decoder_configs(config, config)
if encoder_decoder_type:
config_class, model_class, tokenizer_class = MODEL_CLASSES[encoder_decoder_type]
else:
config_class, model_class, tokenizer_class = MODEL_CLASSES[encoder_type]
if encoder_decoder_type in ["bart", "marian", "blender", "blender-large"]:
self.model = model_class.from_pretrained(encoder_decoder_name)
if encoder_decoder_type in ["bart", "blender", "blender-large"]:
self.encoder_tokenizer = tokenizer_class.from_pretrained(encoder_decoder_name)
# self.encoder_tokenizer = tokenizer_class.from_pretrained(encoder_decoder_name, additional_special_tokens=['__defi__', '__sim__'])
# self.model.resize_token_embeddings(len(self.encoder_tokenizer))
elif encoder_decoder_type == "marian":
if self.args.base_marian_model_name:
self.encoder_tokenizer = tokenizer_class.from_pretrained(self.args.base_marian_model_name)
else:
self.encoder_tokenizer = tokenizer_class.from_pretrained(encoder_decoder_name)
self.decoder_tokenizer = self.encoder_tokenizer
self.config = self.model.config
else:
if encoder_decoder_name:
# self.model = EncoderDecoderModel.from_pretrained(encoder_decoder_name)
self.model = EncoderDecoderModel.from_encoder_decoder_pretrained(
os.path.join(encoder_decoder_name, "encoder"), os.path.join(encoder_decoder_name, "decoder")
)
self.model.encoder = model_class.from_pretrained(os.path.join(encoder_decoder_name, "encoder"))
self.model.decoder = BertForMaskedLM.from_pretrained(os.path.join(encoder_decoder_name, "decoder"))
self.encoder_tokenizer = tokenizer_class.from_pretrained(os.path.join(encoder_decoder_name, "encoder"))
self.decoder_tokenizer = BertTokenizer.from_pretrained(os.path.join(encoder_decoder_name, "decoder"))
else:
self.model = EncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_name, decoder_name, config=config
)
self.encoder_tokenizer = tokenizer_class.from_pretrained(encoder_name)
self.decoder_tokenizer = BertTokenizer.from_pretrained(decoder_name)
self.encoder_config = self.model.config.encoder
self.decoder_config = self.model.config.decoder
if self.args.wandb_project and not wandb_available:
warnings.warn("wandb_project specified but wandb is not available. Wandb disabled.")
self.args.wandb_project = None
if encoder_decoder_name:
self.args.model_name = encoder_decoder_name
# # Checking if we are loading from a saved model or using a pre-trained model
# if not saved_model_args and encoder_decoder_type == "marian":
# Need to store base pre-trained model name to get the tokenizer when loading a saved model
self.args.base_marian_model_name = encoder_decoder_name
elif encoder_name and decoder_name:
self.args.model_name = encoder_name + "-" + decoder_name
else:
self.args.model_name = "encoder-decoder"
if encoder_decoder_type:
self.args.model_type = encoder_decoder_type
elif encoder_type:
self.args.model_type = encoder_type + "-bert"
else:
self.args.model_type = "encoder-decoder"
def train_model(
self, train_data, output_dir=None, show_running_loss=True, args=None, eval_data=None, verbose=True, **kwargs,
):
"""
Trains the model using 'train_data'
Args:
train_data: Pandas DataFrame containing the 2 columns - `input_text`, `target_text`.
- `input_text`: The input text sequence.
- `target_text`: The target text sequence
output_dir: The directory where model files will be saved. If not given, self.args.output_dir will be used.
show_running_loss (optional): Set to False to prevent running loss from being printed to console. Defaults to True.
args (optional): Optional changes to the args dict of the model. Any changes made will persist for the model.
eval_data (optional): A DataFrame against which evaluation will be performed when evaluate_during_training is enabled. Is required if evaluate_during_training is enabled.
**kwargs: Additional metrics that should be used. Pass in the metrics as keyword arguments (name of metric: function to use).
A metric function should take in two parameters. The first parameter will be the true labels, and the second parameter will be the predictions. Both inputs
will be lists of strings. Note that this will slow down training significantly as the predicted sequences need to be generated.
Returns:
None
""" # noqa: ignore flake8"
if args:
self.args.update_from_dict(args)
# if self.args.silent:
# show_running_loss = False
if self.args.evaluate_during_training and eval_data is None:
raise ValueError(
"evaluate_during_training is enabled but eval_data is not specified."
" Pass eval_data to model.train_model() if using evaluate_during_training."
)
if not output_dir:
output_dir = self.args.output_dir
if os.path.exists(output_dir) and os.listdir(output_dir) and not self.args.overwrite_output_dir:
raise ValueError(
"Output directory ({}) already exists and is not empty."
" Set args.overwrite_output_dir = True to overcome.".format(output_dir)
)
self._move_model_to_device()
train_dataset = self.load_and_cache_examples(train_data, verbose=verbose)
os.makedirs(output_dir, exist_ok=True)
global_step, tr_loss = self.train(
train_dataset,
output_dir,
show_running_loss=show_running_loss,
eval_data=eval_data,
verbose=verbose,
**kwargs,
)
self._save_model(self.args.output_dir, model=self.model)
# model_to_save = self.model.module if hasattr(self.model, "module") else self.model
# model_to_save.save_pretrained(output_dir)
# self.encoder_tokenizer.save_pretrained(output_dir)
# self.decoder_tokenizer.save_pretrained(output_dir)
# torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
if verbose:
logger.info(" Training of {} model complete. Saved to {}.".format(self.args.model_name, output_dir))
def train(
self, train_dataset, output_dir, show_running_loss=True, eval_data=None, verbose=True, **kwargs,
):
"""
Trains the model on train_dataset.
Utility function to be used by the train_model() method. Not intended to be used directly.
"""
model = self.model
args = self.args
tb_writer = SummaryWriter(logdir=args.tensorboard_dir)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=args.train_batch_size,
num_workers=self.args.dataloader_num_workers,
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = []
custom_parameter_names = set()
for group in self.args.custom_parameter_groups:
params = group.pop("params")
custom_parameter_names.update(params)
param_group = {**group}
param_group["params"] = [p for n, p in model.named_parameters() if n in params]
optimizer_grouped_parameters.append(param_group)
for group in self.args.custom_layer_parameters:
layer_number = group.pop("layer")
layer = f"layer.{layer_number}."
group_d = {**group}
group_nd = {**group}
group_nd["weight_decay"] = 0.0
params_d = []
params_nd = []
for n, p in model.named_parameters():
if n not in custom_parameter_names and layer in n:
if any(nd in n for nd in no_decay):
params_nd.append(p)
else:
params_d.append(p)
custom_parameter_names.add(n)
group_d["params"] = params_d
group_nd["params"] = params_nd
optimizer_grouped_parameters.append(group_d)
optimizer_grouped_parameters.append(group_nd)
if not self.args.train_custom_parameters_only:
optimizer_grouped_parameters.extend(
[
{
"params": [
p
for n, p in model.named_parameters()
if n not in custom_parameter_names and not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if n not in custom_parameter_names and any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
)
warmup_steps = math.ceil(t_total * args.warmup_ratio)
args.warmup_steps = warmup_steps if args.warmup_steps == 0 else args.warmup_steps
# TODO: Use custom optimizer like with BertSum?
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
# decay
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if (
args.model_name
and os.path.isfile(os.path.join(args.model_name, "optimizer.pt"))
and os.path.isfile(os.path.join(args.model_name, "scheduler.pt"))
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name, "scheduler.pt")))
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info(" Training started")
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.silent, mininterval=0)
epoch_number = 0
best_eval_metric = None
early_stopping_counter = 0
steps_trained_in_current_epoch = 0
epochs_trained = 0
if args.model_name and os.path.exists(args.model_name):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name.split("/")[-1].split("-")
if len(checkpoint_suffix) > 2:
checkpoint_suffix = checkpoint_suffix[1]
else:
checkpoint_suffix = checkpoint_suffix[-1]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (
len(train_dataloader) // args.gradient_accumulation_steps
)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the current epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
if args.evaluate_during_training:
training_progress_scores = self._create_training_progress_scores(**kwargs)
if args.wandb_project:
wandb.init(project=args.wandb_project, config={**asdict(args)}, **args.wandb_kwargs)
wandb.watch(self.model)
if args.fp16:
from torch.cuda import amp
scaler = amp.GradScaler()
model.train()
for current_epoch in train_iterator:
if epochs_trained > 0:
epochs_trained -= 1
continue
train_iterator.set_description(f"Epoch {epoch_number + 1} of {args.num_train_epochs}")
batch_iterator = tqdm(
train_dataloader,
desc=f"Running Epoch {epoch_number} of {args.num_train_epochs}",
disable=args.silent,
mininterval=0,
)
for step, batch in enumerate(batch_iterator):
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
# batch = tuple(t.to(device) for t in batch)
inputs = self._get_inputs_dict(batch)
if args.fp16:
with amp.autocast():
outputs = model(**inputs)
# model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0]
else:
outputs = model(**inputs)
# model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0]
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
current_loss = loss.item()
if show_running_loss:
batch_iterator.set_description(
f"Epochs {epoch_number}/{args.num_train_epochs}. Running Loss: {current_loss:9.4f}"
)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
scaler.scale(loss).backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if args.fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.wandb_project:
wandb.log(
{
"Training loss": current_loss,
"lr": scheduler.get_lr()[0],
"global_step": global_step,
}
)
if args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step))
self._save_model(output_dir_current, optimizer, scheduler, model=model)
if args.evaluate_during_training and (
args.evaluate_during_training_steps > 0
and global_step % args.evaluate_during_training_steps == 0
):
# Only evaluate when single GPU otherwise metrics may not average well
results = self.eval_model(
eval_data,
verbose=verbose and args.evaluate_during_training_verbose,
silent=args.evaluate_during_training_silent,
**kwargs,
)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step))
if args.save_eval_checkpoints:
self._save_model(output_dir_current, optimizer, scheduler, model=model, results=results)
training_progress_scores["global_step"].append(global_step)
training_progress_scores["train_loss"].append(current_loss)
for key in results:
training_progress_scores[key].append(results[key])
report = pd.DataFrame(training_progress_scores)
report.to_csv(
os.path.join(args.output_dir, "training_progress_scores.csv"), index=False,
)
if args.wandb_project:
wandb.log(self._get_last_metrics(training_progress_scores))
if not best_eval_metric:
best_eval_metric = results[args.early_stopping_metric]
if args.save_best_model:
self._save_model(
args.best_model_dir, optimizer, scheduler, model=model, results=results
)
if best_eval_metric and args.early_stopping_metric_minimize:
if results[args.early_stopping_metric] - best_eval_metric < args.early_stopping_delta:
best_eval_metric = results[args.early_stopping_metric]
if args.save_best_model:
self._save_model(
args.best_model_dir, optimizer, scheduler, model=model, results=results
)
early_stopping_counter = 0
else:
if args.use_early_stopping:
if early_stopping_counter < args.early_stopping_patience:
early_stopping_counter += 1
if verbose:
logger.info(f" No improvement in {args.early_stopping_metric}")
logger.info(f" Current step: {early_stopping_counter}")
logger.info(f" Early stopping patience: {args.early_stopping_patience}")
else:
if verbose:
logger.info(f" Patience of {args.early_stopping_patience} steps reached")
logger.info(" Training terminated.")
train_iterator.close()
return global_step, tr_loss / global_step
else:
if results[args.early_stopping_metric] - best_eval_metric > args.early_stopping_delta:
best_eval_metric = results[args.early_stopping_metric]
if args.save_best_model:
self._save_model(
args.best_model_dir, optimizer, scheduler, model=model, results=results
)
early_stopping_counter = 0
else:
if args.use_early_stopping:
if early_stopping_counter < args.early_stopping_patience:
early_stopping_counter += 1
if verbose:
logger.info(f" No improvement in {args.early_stopping_metric}")
logger.info(f" Current step: {early_stopping_counter}")
logger.info(f" Early stopping patience: {args.early_stopping_patience}")
else:
if verbose:
logger.info(f" Patience of {args.early_stopping_patience} steps reached")
logger.info(" Training terminated.")
train_iterator.close()
return global_step, tr_loss / global_step
epoch_number += 1
output_dir_current = os.path.join(output_dir, "checkpoint-{}-epoch-{}".format(global_step, epoch_number))
if args.save_model_every_epoch or args.evaluate_during_training:
os.makedirs(output_dir_current, exist_ok=True)
if args.save_model_every_epoch:
self._save_model(output_dir_current, optimizer, scheduler, model=model)
if args.evaluate_during_training:
results = self.eval_model(
eval_data,
verbose=verbose and args.evaluate_during_training_verbose,
silent=args.evaluate_during_training_silent,
**kwargs,
)
if args.save_eval_checkpoints:
self._save_model(output_dir_current, optimizer, scheduler, results=results)
training_progress_scores["global_step"].append(global_step)
training_progress_scores["train_loss"].append(current_loss)
for key in results:
training_progress_scores[key].append(results[key])
report = pd.DataFrame(training_progress_scores)
report.to_csv(os.path.join(args.output_dir, "training_progress_scores.csv"), index=False)
if args.wandb_project:
wandb.log(self._get_last_metrics(training_progress_scores))
if not best_eval_metric:
best_eval_metric = results[args.early_stopping_metric]
if args.save_best_model:
self._save_model(args.best_model_dir, optimizer, scheduler, model=model, results=results)
if best_eval_metric and args.early_stopping_metric_minimize:
if results[args.early_stopping_metric] - best_eval_metric < args.early_stopping_delta:
best_eval_metric = results[args.early_stopping_metric]
if args.save_best_model:
self._save_model(args.best_model_dir, optimizer, scheduler, model=model, results=results)
early_stopping_counter = 0
else:
if args.use_early_stopping and args.early_stopping_consider_epochs:
if early_stopping_counter < args.early_stopping_patience:
early_stopping_counter += 1
if verbose:
logger.info(f" No improvement in {args.early_stopping_metric}")
logger.info(f" Current step: {early_stopping_counter}")
logger.info(f" Early stopping patience: {args.early_stopping_patience}")
else:
if verbose:
logger.info(f" Patience of {args.early_stopping_patience} steps reached")
logger.info(" Training terminated.")
train_iterator.close()
return global_step, tr_loss / global_step
else:
if results[args.early_stopping_metric] - best_eval_metric > args.early_stopping_delta:
best_eval_metric = results[args.early_stopping_metric]
if args.save_best_model:
self._save_model(args.best_model_dir, optimizer, scheduler, model=model, results=results)
early_stopping_counter = 0
else:
if args.use_early_stopping and args.early_stopping_consider_epochs:
if early_stopping_counter < args.early_stopping_patience:
early_stopping_counter += 1
if verbose:
logger.info(f" No improvement in {args.early_stopping_metric}")
logger.info(f" Current step: {early_stopping_counter}")
logger.info(f" Early stopping patience: {args.early_stopping_patience}")
else:
if verbose:
logger.info(f" Patience of {args.early_stopping_patience} steps reached")
logger.info(" Training terminated.")
train_iterator.close()
return global_step, tr_loss / global_step
return global_step, tr_loss / global_step
def eval_model(self, eval_data, output_dir=None, verbose=True, silent=False, **kwargs):
"""
Evaluates the model on eval_data. Saves results to output_dir.
Args:
eval_data: Pandas DataFrame containing the 2 columns - `input_text`, `target_text`.
- `input_text`: The input text sequence.
- `target_text`: The target text sequence.
output_dir: The directory where model files will be saved. If not given, self.args.output_dir will be used.
verbose: If verbose, results will be printed to the console on completion of evaluation.
silent: If silent, tqdm progress bars will be hidden.
**kwargs: Additional metrics that should be used. Pass in the metrics as keyword arguments (name of metric: function to use).
A metric function should take in two parameters. The first parameter will be the true labels, and the second parameter will be the predictions. Both inputs
will be lists of strings. Note that this will slow down evaluation significantly as the predicted sequences need to be generated.
Returns:
results: Dictionary containing evaluation results.
""" # noqa: ignore flake8"
if not output_dir:
output_dir = self.args.output_dir
self._move_model_to_device()
eval_dataset = self.load_and_cache_examples(eval_data, evaluate=True, verbose=verbose, silent=silent)
os.makedirs(output_dir, exist_ok=True)
result = self.evaluate(eval_dataset, output_dir, verbose=verbose, silent=silent, **kwargs)
self.results.update(result)
if self.args.evaluate_generated_text:
# to_predict = eval_data["input_text"].tolist()
# preds = self.predict(to_predict)
# result = self.compute_metrics(eval_data["target_text"].tolist(), preds, **kwargs)
result = self.evaluate_decode(eval_dataset, output_dir, verbose=verbose, silent=silent, **kwargs)
self.results.update(result)
if verbose:
logger.info(self.results)
return self.results
def evaluate(self, eval_dataset, output_dir, verbose=True, silent=False, **kwargs):
"""
Evaluates the model on eval_dataset.
Utility function to be used by the eval_model() method. Not intended to be used directly.
"""
model = self.model
args = self.args
eval_output_dir = output_dir
results = {}
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
for batch in tqdm(eval_dataloader, disable=args.silent or silent, desc="Running Evaluation"):
# batch = tuple(t.to(device) for t in batch)
inputs = self._get_inputs_dict(batch)
with torch.no_grad():
outputs = model(**inputs)
loss = outputs[0]
eval_loss += loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
results["eval_loss"] = eval_loss
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
for key in sorted(results.keys()):
writer.write("{} = {}\n".format(key, str(results[key])))
return results
def evaluate_decode(self, eval_dataset, output_dir, verbose=True, silent=False, **kwargs):
"""
Evaluates the model on eval_dataset.
Utility function to be used by the eval_model() method. Not intended to be used directly.
"""
model = self.model
args = self.args
eval_output_dir = output_dir
results = {}
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
correct, count = 0, 0
for batch in tqdm(eval_dataloader, disable=args.silent or silent, desc="Running Evaluation"):
# batch = tuple(t.to(device) for t in batch)
inputs = self._get_inputs_dict(batch)
# print(inputs)
with torch.no_grad():
outputs = model(**inputs)
loss = outputs[0]
eval_loss += loss.mean().item()
decode_outputs = torch.argmax(outputs[1], dim=-1).view(-1)
labels = inputs["labels"].view(-1)
for i, j in zip(labels, decode_outputs):
if i == j and i != -100:
correct += 1
if i != -100:
count += 1
nb_eval_steps += 1
results["eval_acc"] = correct / count
return results
def predict(self, to_predict):
"""
Performs predictions on a list of text.
Args:
to_predict: A python list of text (str) to be sent to the model for prediction. Note that the prefix should be prepended to the text.
Returns:
preds: A python list of the generated sequences.
""" # noqa: ignore flake8"
self._move_model_to_device()
all_outputs = []
# Batching
for batch in [
to_predict[i : i + self.args.eval_batch_size] for i in range(0, len(to_predict), self.args.eval_batch_size)
]:
if self.args.model_type == "marian":
input_ids = self.encoder_tokenizer.prepare_translation_batch(
batch, max_length=self.args.max_seq_length, padding='max_length', truncation=True, return_tensors="pt",
)["input_ids"]
else:
input_ids = self.encoder_tokenizer.batch_encode_plus(
batch, max_length=self.args.max_seq_length, padding='max_length', truncation=True, return_tensors="pt",
)["input_ids"]
input_ids = input_ids.to(self.device)
if self.args.model_type in ["bart", "marian", "blender", "blender-large"]:
outputs = self.model.generate(
input_ids=input_ids,
num_beams=self.args.num_beams,
max_length=self.args.max_length,
length_penalty=self.args.length_penalty,
early_stopping=self.args.early_stopping,
repetition_penalty=self.args.repetition_penalty,
do_sample=self.args.do_sample,
top_k=self.args.top_k,
top_p=self.args.top_p,
num_return_sequences=self.args.num_return_sequences,
# temperature=0.7
)
else:
outputs = self.model.generate(
input_ids=input_ids,
decoder_start_token_id=self.model.config.decoder.pad_token_id,
num_beams=self.args.num_beams,
max_length=self.args.max_length,
length_penalty=self.args.length_penalty,
early_stopping=self.args.early_stopping,
repetition_penalty=self.args.repetition_penalty,
do_sample=self.args.do_sample,
top_k=self.args.top_k,
top_p=self.args.top_p,
num_return_sequences=self.args.num_return_sequences,
)
all_outputs.extend(outputs.cpu().numpy())
if self.args.use_multiprocessed_decoding:
self.model.to("cpu")
with Pool(self.args.process_count) as p:
outputs = list(
tqdm(
p.imap(self._decode, all_outputs, chunksize=self.args.multiprocessing_chunksize),
total=len(all_outputs),
desc="Decoding outputs",
disable=self.args.silent,
)
)
self._move_model_to_device()
else:
outputs = [
self.decoder_tokenizer.decode(output_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for output_id in all_outputs
]
if self.args.num_return_sequences > 1:
return [
outputs[i : i + self.args.num_return_sequences]
for i in range(0, len(outputs), self.args.num_return_sequences)
]
else:
return outputs
def predict_sep(self, to_predict, decoder_input_token_id):
"""
Performs predictions on a list of text.
Args:
to_predict: A python list of text (str) to be sent to the model for prediction. Note that the prefix should be prepended to the text.
Returns:
preds: A python list of the generated sequences.
""" # noqa: ignore flake8"
self._move_model_to_device()
all_outputs = []
# Batching
for batch in [
to_predict[i : i + self.args.eval_batch_size] for i in range(0, len(to_predict), self.args.eval_batch_size)
]:
if self.args.model_type == "marian":
input_ids = self.encoder_tokenizer.prepare_translation_batch(
batch, max_length=self.args.max_seq_length, padding='max_length', truncation=True, return_tensors="pt",
)["input_ids"]
else:
input_ids = self.encoder_tokenizer.batch_encode_plus(
batch, max_length=self.args.max_seq_length, padding='max_length', truncation=True, return_tensors="pt",
)["input_ids"]
input_ids = input_ids.to(self.device)
if self.args.model_type in ["bart", "marian", "blender", "blender-large"]:
outputs = self.model.generate(
input_ids=input_ids,
num_beams=self.args.num_beams,
max_length=self.args.max_length,
length_penalty=self.args.length_penalty,
early_stopping=self.args.early_stopping,
repetition_penalty=self.args.repetition_penalty,
do_sample=self.args.do_sample,
top_k=self.args.top_k,
top_p=self.args.top_p,
num_return_sequences=self.args.num_return_sequences,
decoder_start_token_id=decoder_input_token_id
# temperature=0.7
)
else:
outputs = self.model.generate(
input_ids=input_ids,
decoder_start_token_id=self.model.config.decoder.pad_token_id,
num_beams=self.args.num_beams,
max_length=self.args.max_length,
length_penalty=self.args.length_penalty,
early_stopping=self.args.early_stopping,
repetition_penalty=self.args.repetition_penalty,
do_sample=self.args.do_sample,
top_k=self.args.top_k,
top_p=self.args.top_p,
num_return_sequences=self.args.num_return_sequences,
)
all_outputs.extend(outputs.cpu().numpy())
if self.args.use_multiprocessed_decoding:
self.model.to("cpu")
with Pool(self.args.process_count) as p:
outputs = list(
tqdm(
p.imap(self._decode, all_outputs, chunksize=self.args.multiprocessing_chunksize),
total=len(all_outputs),
desc="Decoding outputs",
disable=self.args.silent,
)
)
self._move_model_to_device()
else:
outputs = [
self.decoder_tokenizer.decode(output_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for output_id in all_outputs
]
if self.args.num_return_sequences > 1:
return [
outputs[i : i + self.args.num_return_sequences]
for i in range(0, len(outputs), self.args.num_return_sequences)
]
else:
return outputs
def _decode(self, output_id):
return self.decoder_tokenizer.decode(output_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
def compute_metrics(self, labels, preds, **kwargs):
"""
Computes the evaluation metrics for the model predictions.
Args:
labels: List of target sequences
preds: List of model generated outputs
**kwargs: Custom metrics that should be used. Pass in the metrics as keyword arguments (name of metric: function to use).
A metric function should take in two parameters. The first parameter will be the true labels, and the second parameter will be the predictions. Both inputs
will be lists of strings. Note that this will slow down evaluation significantly as the predicted sequences need to be generated.
Returns:
result: Dictionary containing evaluation results.
""" # noqa: ignore flake8"
assert len(labels) == len(preds)
acc = 0
total_count = 0
results = {}
for sentence_i, sentence_j in zip(labels, preds):
sentence_i = sentence_i.strip()
sentence_i = sentence_i.replace(".", " .")
sentence_i = sentence_i.replace(",", " ,")
sentence_i = sentence_i.replace("?", " ?")
total_count += len(sentence_i.split())
print(sentence_i.split())