This sample contains a sample to run EfficientDet-Lite on Jetson Nano using the EfficientNMS plugin.
This notebook contains a sample that converts EfficientDet-Lite's AutoML Model into an ONNX model for running on TensorRT.
Convert to ONNX model with Google Colab or Host PC and copy ONNX model to Jetson Nano.
$ sudo apt install libopencv-dev cmake libboost-dev
$ cd ~
$ git clone https://github.com/NobuoTsukamoto/tensorrt-examples.git
$ cd tensorrt-examples
$ git submodule init && git submodule update
When converting EfficientDet-Lite0.
Model path: ~/tensorrt-examples/cpp/efficientdet/efficientdet-lite4.onnx
$ cd ~/tensorrt-examples/TensorRT/samples/python/efficientdet/
$ python3 build_engine.py \
--onnx ~/tensorrt-examples/cpp/efficientdet/efficientdet-lite0.onnx \
--engine ~/tensorrt-examples/cpp/efficientdet/efficientdet-lite0.trt
$ cd ~/tensorrt-examples/cpp/efficientdet/
$ mkdir build && cd build
$ cmake ..
$ make
$ ./trt_efficientdet \
~/tensorrt-examples/cpp/efficientdet/efficientdet-lite0.trt \
--width=320 \
--height=320 \
--label=~/tensorrt-examples/models/coco_labels.txt
$ ./trt_efficientdet --help
Usage: trt_efficientdet [params] input
-?, -h, --help, --usage (value:true)
show help command.
-H, --height (value:512)
input model height.
-f, --file
path to video file.
-l, --label (value:.)
path to label file.
-o, --output
output video file path.
-s, --score (value:0.5)
score threshold.
-w, --width (value:512)
input model width.
input
path to trt engine file.