forked from AIVIETNAMResearch/AI-City-2023-Track2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_.py
321 lines (266 loc) · 9.03 KB
/
utils_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import io
import logging
import os
import colorlog
import os.path as osp
import sys
import json
import time
import errno
import numpy as np
import random
import warnings
import PIL
import torch
from PIL import Image
from torchmetrics import RetrievalMRR
import refile
import tempfile
import torch
def set_seed(seed=42, deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.device_count() > 1:
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = deterministic
print(f"====> set seed {seed}")
class TqdmToLogger(io.StringIO):
logger = None
level = None
buf = ''
def __init__(self):
super(TqdmToLogger, self).__init__()
self.logger = get_logger('tqdm')
def write(self, buf):
self.buf = buf.strip('\r\n\t ')
def flush(self):
self.logger.info(self.buf)
def get_logger(logger_name='default', debug=False, save_to_dir=None):
if debug:
log_format = (
'%(asctime)s - '
'%(levelname)s : '
'%(name)s - '
'%(pathname)s[%(lineno)d]:'
'%(funcName)s - '
'%(message)s'
)
else:
log_format = (
'%(asctime)s - '
'%(levelname)s : '
'%(name)s - '
'%(message)s'
)
bold_seq = '\033[1m'
colorlog_format = f'{bold_seq} %(log_color)s {log_format}'
colorlog.basicConfig(format=colorlog_format, datefmt='%y-%m-%d %H:%M:%S')
logger = logging.getLogger(logger_name)
if debug:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
if save_to_dir is not None:
fh = logging.FileHandler(os.path.join(save_to_dir, 'log', 'debug.log'))
fh.setLevel(logging.DEBUG)
formatter = logging.Formatter(log_format)
fh.setFormatter(formatter)
logger.addHandler(fh)
fh = logging.FileHandler(
os.path.join(save_to_dir, 'log', 'warning.log'))
fh.setLevel(logging.WARNING)
formatter = logging.Formatter(log_format)
fh.setFormatter(formatter)
logger.addHandler(fh)
fh = logging.FileHandler(os.path.join(save_to_dir, 'log', 'error.log'))
fh.setLevel(logging.ERROR)
formatter = logging.Formatter(log_format)
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def get_mrr(sim_mat):
mrr = RetrievalMRR()
return mrr(
sim_mat.flatten(),
torch.eye(len(sim_mat), device=sim_mat.device).long().bool().flatten(),
torch.arange(len(sim_mat), device=sim_mat.device)[:, None].expand(len(sim_mat), len(sim_mat)).flatten(),
)
pass
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
# pred(correct.shape)
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def recall_at_k(output, target, topk=1):
"""Computes the recall@5 for the predictions"""
with torch.no_grad():
_, pred = output.topk(k=topk, dim=1, largest=True, sorted=True)
correct = pred.eq(target.view(-1, 1).expand_as(pred))
num_correct = correct.sum(dim=1)
recall = num_correct.gt(0).float().mean().item() * 100.0
return recall
def recall(output, target, topk=(1,)):
res = []
for k in topk:
res.append(recall_at_k(output, target, topk=k))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def mkdir_if_missing(dirname):
"""Creates dirname if it is missing."""
if not osp.exists(dirname):
try:
os.makedirs(dirname)
except OSError as e:
if e.errno != errno.EEXIST:
raise
class Logger(object):
def __init__(self, fpath=None):
self.console = sys.stdout
self.file = None
if fpath is not None:
mkdir_if_missing(os.path.dirname(fpath))
self.file = open(fpath, 'w')
def __del__(self):
self.close()
def __enter__(self):
pass
def __exit__(self, *args):
self.close()
def write(self, msg):
self.console.write(msg)
if self.file is not None:
self.file.write(msg)
def flush(self):
self.console.flush()
if self.file is not None:
self.file.flush()
os.fsync(self.file.fileno())
def close(self):
self.console.close()
if self.file is not None:
self.file.close()
class MgvSaveHelper(object):
def __init__(self, save_oss=False, oss_path='', echo=True):
self.oss_path = oss_path
self.save_oss = save_oss
self.echo = echo
def set_stauts(self, save_oss=False, oss_path='', echo=True):
self.oss_path = oss_path
self.save_oss = save_oss
self.echo = echo
def get_s3_path(self, path):
if self.check_s3_path(path):
return path
return self.oss_path + path
def check_s3_path(self, path):
return path.startswith('s3:')
def load_ckpt(self, path):
if self.check_s3_path(path):
with refile.smart_open(path, "rb") as f:
ckpt = torch.load(f)
else:
ckpt = torch.load(path)
if self.echo:
print(f"====> load checkpoint from {path}")
return ckpt
def save_ckpt(self, path, epoch, model, optimizer=None):
if self.save_oss:
if not self.check_s3_path(path):
path = self.get_s3_path(path)
with refile.smart_open(path, "wb") as f:
torch.save(
{"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict()}, f)
else:
torch.save(
{"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict()}, path)
if self.echo:
print(f"====> save checkpoint to {path}")
def save_pth(self, path, file):
if self.save_oss:
if not self.check_s3_path(path):
path = self.get_s3_path(path)
with refile.smart_open(path, "wb") as f:
torch.save(file, f)
else:
torch.save(file, path)
if self.echo:
print(f"====> save pth to {path}")
def load_pth(self, path):
if self.check_s3_path(path):
with refile.smart_open(path, "rb") as f:
ckpt = torch.load(f)
else:
ckpt = torch.load(path)
if self.echo:
print(f"====> load pth from {path}")
return ckpt
def state_dict_data_parallel_fix(load_state_dict, curr_state_dict):
load_keys = list(load_state_dict.keys())
curr_keys = list(curr_state_dict.keys())
redo_dp = False
undo_dp = False
if not curr_keys[0].startswith('module.') and load_keys[0].startswith('module.'):
undo_dp = True
elif curr_keys[0].startswith('module.') and not load_keys[0].startswith('module.'):
redo_dp = True
if undo_dp:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in load_state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
elif redo_dp:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in load_state_dict.items():
name = 'module.' + k # remove `module.`
new_state_dict[name] = v
else:
new_state_dict = load_state_dict
return new_state_dict