-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
30 lines (24 loc) · 904 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
from flask import Flask, request, jsonify, render_template
import pickle
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
'''
For rendering results on HTML GUI
'''
int_features = [int(x) for x in request.form.values()]
final_features = [np.array(int_features)]
prediction = model.predict(final_features)
output = round(prediction[0], 2)
print(output)
if int(output)==1:
return render_template('index.html', prediction_text='High chances of heart disease, score = $ {}'.format(output))
else:
return render_template('index.html', prediction_text='Low chances of heart disease, score $ {}'.format(output))
if __name__ == "__main__":
app.run(host='127.0.0.1', port=8080,debug=True)