-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
329 lines (221 loc) · 9.63 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from entry import Entry
from indicators import Indicators
import numpy as np
import itertools
from matplotlib import pyplot as plt
from matplotlib.ticker import PercentFormatter
def getNumericHistogramVariable(entries, variable):
data = []
# TODO TODO TODO maybe don't assume int
for e in entries:
data.append(int(e.getProp(variable)))
return data
def getAlphanumericHistogramVariable(entries, variable):
data = []
# TODO TODO TODO maybe don't assume int
for e in entries:
data.append(e.getProp(variable))
return data
class Visualizer:
def __init__(self):
pass
@classmethod
def ageDistribution(cls, entries, ethnicities):
ages = []
colors = ["plum", "limegreen", "cornflowerblue", "palegoldenrod", "mediumvioletred"]
# Age bins. Children, Adult, Elderly
bins = [1, 18, 65, 100]
for i,e in enumerate(ethnicities):
var = "ro2011a_ethnic"
if e == "Muslim":
var = "religion"
filtered_entries = list(filter(lambda p: p.getProp(var) == e, entries))
print(len(filtered_entries))
# Get age data
ages.append(getNumericHistogramVariable(filtered_entries, "age"))
percents = []
for i,age in enumerate(ages):
print(ethnicities[i])
sum_children = len([x for x in age if x < 18])
sum_adults = len([x for x in age if 18 <= x < 65])
sum_elderly = len([x for x in age if x >= 65])
print(f"Children: {sum_children/len(age)}\nAdults: {sum_adults/len(age)}\nElderly: {sum_elderly/len(age)}")
percents.append([sum_children/len(age), sum_adults/len(age), sum_elderly/len(age)])
categories = ["Children (<18)", "Adults (18-65)", "Elderly (>65)"]
X = np.arange(len(categories))
width = 0.8
for i in range(len(ethnicities)):
offset = X - width/2. + i/float(len(ethnicities)) * width
plt.bar(offset, percents[i], color=colors[i], width=width/float(len(ethnicities)), align="edge", zorder=3)
plt.xticks(X, categories)
plt.legend([e + f" (n={len(ages[i])})" for i,e in enumerate(ethnicities)])
plt.ylabel("Percentage of Population")
plt.title("Age Distribution of Young and Old Demographics, Compared to Romanians")
plt.grid()
plt.gca().yaxis.set_major_formatter(PercentFormatter(1))
plt.show()
@classmethod
def ethnicDistribution(cls, entries, maps):
pass
# Display the top n unemployment rates
@classmethod
def unemploymentChart(cls, entries, maps, n):
# Dict to store all {ethnicity/religion: unemployment_rate} pairs
unemployment_stratified = {}
# For each religion and ethnicity, if there are 20 or more entries, calculate that group's unemployment rate
for r in maps["religion"].values():
these_entries = list(filter(lambda e: e.getProp("religion") == r, entries))
if len(these_entries) > 20:
unemployment = Indicators.countUnemployed(these_entries) / len(these_entries)
unemployment_stratified[r] = unemployment
for e in maps["ro2011a_ethnic"].values():
these_entries = list(filter(lambda p: p.getProp("ro2011a_ethnic") == e, entries))
if len(these_entries) > 20:
unemployment = Indicators.countUnemployed(these_entries) / len(these_entries)
unemployment_stratified[e] = unemployment
# Sort the dict by highest unemployment rate
sorted_unemployment = {k: v for k, v in sorted(unemployment_stratified.items(), key=lambda x: -x[1])}
# Remove Romanian, since we want top 4 excluding Romanian
romanian = sorted_unemployment.pop("Romanian", None)
# Grab the top five unemployment rates
top_five = {}
for k,v in list(sorted_unemployment.items())[:n-1]:
top_five[k] = v
# Add Romanian back in, and sort the dict and put it back in sorted_unemployment
top_five["Romanian"] = romanian
sorted_unemployment = {k: v for k, v in sorted(top_five.items(), key=lambda x: -x[1])}
print(sorted_unemployment)
categories = list(sorted_unemployment.keys())
values = sorted_unemployment.values()
print(categories)
Y = np.arange(len(categories))
plt.barh(Y, values, align="center", zorder=3)
plt.yticks(Y, categories)
plt.gca().invert_yaxis()
plt.xlabel("Unemployment rate (18 < age < 60)")
plt.title(f"Top {n-1} Unemployment Rates, Compared to Romanians")
plt.grid()
plt.gca().xaxis.set_major_formatter(PercentFormatter(1))
plt.tight_layout()
plt.show()
@classmethod
def incomeDistribution(cls, entries):
entries = filter(lambda p: p.getProp("ro2011a_ethnic") == "Romanian", entries)
incomes = [income for income in getNumericHistogramVariable(entries, "income") if not income == 0]
plt.hist(incomes, bins=25, color="royalblue")
plt.title("Income Distribution for Romanians")
plt.ylabel("Count")
plt.xlabel("Income (lei/yr)")
plt.gca().ticklabel_format(useOffset=False, style="plain")
plt.show()
@classmethod
def educationDistribution(cls, entries, ethnicities):
educations = []
colors = ["plum", "limegreen", "cornflowerblue", "palegoldenrod", "mediumvioletred"]
for i,e in enumerate(ethnicities):
var = "ro2011a_ethnic"
if e in ["Unknown religion", "Muslim"]:
var = "religion"
filtered_entries = list(filter(lambda p: p.getProp(var) == e, entries))
print(len(filtered_entries))
# Get education data
educations.append(getAlphanumericHistogramVariable(filtered_entries, "educro"))
percents = []
for ed in educations:
sum_none = len([x for x in ed if x == "None"])
sum_primary = len([x for x in ed if x in ["Primary", "Literacy courses"]])
sum_secondary = len([x for x in ed if x == "Secondary"])
sum_post = len([x for x in ed if x == "Post-secondary"])
percents.append([sum_none/len(ed), sum_primary/len(ed), sum_secondary/len(ed), sum_post/len(ed)])
categories = ["No education", "Primary", "Secondary", "Post-secondary"]
X = np.arange(len(categories))
width = 0.8
for i in range(len(ethnicities)):
offset = X - width/2. + i/float(len(ethnicities)) * width
plt.bar(offset, percents[i], color=colors[i], width=width/float(len(ethnicities)), align="edge", zorder=3)
plt.xticks(X, categories)
plt.legend([e + f" (n={len(educations[i])})" for i,e in enumerate(ethnicities)])
plt.ylabel("Percentage of Population")
plt.xlabel("Level of Education Attained")
plt.title("Education Attained by Low Education Demographics, Compared to Romanians")
plt.grid()
plt.gca().yaxis.set_major_formatter(PercentFormatter(1))
plt.show()
# Display the top n population densities
@classmethod
def densityChart(cls, entries, maps, n):
# Dict to store all {ethnicity/religion: population_density} pairs
density_stratified = {}
# For each religion and ethnicity, if there are 20 or more entries, calculate that group's pop density
for r in maps["religion"].values():
these_entries = list(filter(lambda e: e.getProp("religion") == r, entries))
if len(these_entries) > 20:
pop_density = len(these_entries) / Indicators.countHouseholds(these_entries)
density_stratified[r] = pop_density
for e in maps["ro2011a_ethnic"].values():
these_entries = list(filter(lambda p: p.getProp("ro2011a_ethnic") == e, entries))
if len(these_entries) > 20:
pop_density = len(these_entries) / Indicators.countHouseholds(these_entries)
density_stratified[e] = pop_density
# Sort the dict by highest pop density
sorted_density = {k: v for k, v in sorted(density_stratified.items(), key=lambda x: -x[1])}
# Remove Romanian, since we want top 4 excluding Romanian
romanian = sorted_density.pop("Romanian", None)
# Grab the top n-1 unemployment rates
top_five = {}
for k,v in list(sorted_density.items())[:n-1]:
top_five[k] = v
# Add Romanian back in, and sort the dict and put it back in sorted_density
top_five["Romanian"] = romanian
sorted_density = {k: v for k, v in sorted(top_five.items(), key=lambda x: -x[1])}
print(sorted_density)
categories = list(sorted_density.keys())
values = sorted_density.values()
print(categories)
Y = np.arange(len(categories))
plt.barh(Y, values, align="center", zorder=3)
plt.yticks(Y, categories)
plt.gca().invert_yaxis()
plt.xlabel("Average People per Household (people/households)")
plt.title(f"Highest People per Household")
plt.grid()
plt.tight_layout()
plt.show()
@classmethod
def popChart(cls, entries, maps, category="ethnicity"):
# Dict to store all {ethnicity/religion: len(pop)} pairs
population_stratified = {}
# For each religion and ethnicity, if there are 20 or more entries, calculate that group's pop density
if category == "religion":
for r in maps["religion"].values():
these_entries = list(filter(lambda e: e.getProp("religion") == r, entries))
if len(these_entries) > 20:
population_stratified[r] = len(these_entries)
elif category == "ethnicity":
for e in maps["ro2011a_ethnic"].values():
these_entries = list(filter(lambda p: p.getProp("ro2011a_ethnic") == e, entries))
if len(these_entries) > 20:
population_stratified[e] = len(these_entries)
else:
print("popChart called, but category was not religion or ethnicity")
# Sort the dict by highest pop density
sorted_pop = {k: v for k, v in sorted(population_stratified.items(), key=lambda x: -x[1])}
# Remove Romanian and Eastern orthodox
sorted_pop.pop("Romanian", None)
sorted_pop.pop("Unknown ethnicity", None)
sorted_pop.pop("Christian", None)
# Sort the dict and put it back in sorted_pop
sorted_pop = {k: v for k, v in sorted(sorted_pop.items(), key=lambda x: -x[1])}
print(sorted_pop)
categories = list(sorted_pop.keys())
values = sorted_pop.values()
print(categories)
Y = np.arange(len(categories))
plt.barh(Y, values, align="center", zorder=3)
plt.yticks(Y, categories)
plt.gca().invert_yaxis()
plt.xlabel("Population")
plt.title(f"{category.capitalize()} Population Distribution in Census Data")
plt.grid()
plt.tight_layout()
plt.show()