-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprg_eof.py
66 lines (56 loc) · 1.96 KB
/
prg_eof.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# _*_ coding : utf-8 _*_
import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model
from mod_gendata import *
from eofs.standard import Eof
import cartopy.crs as ccrs
import cartopy.feature as cfeature
# settinigs
testdir = './data/test_data'
keyward = 'pwat'
lat = 181
lon = 360
# load data
gd=gen_grads_data()
test_data = gd.load_key_data(testdir, keyward)
test_data = test_data.astype('float32')
# load model
#autoencoder = load_model('rh_ae50.h5') # 50 epochs
#autoencoder = load_model('pwat_ae50.h5') # 50 epochs
#autoencoder = load_model('rh_ae1000.h5') # 1,000 epochs
autoencoder = load_model('pwat_ae1000.h5') # 1,000 epochs
#
decoded_imgs = autoencoder.predict(test_data) # prediction
# row dataset
#decoded_imgs = test_data # row/test data
##### eof
# set up latitude
lat_array = np.asarray([x for x in range(-90, 91)])
cos_lat = np.cos(np.deg2rad(lat_array))
weighted_lat = np.sqrt(cos_lat)[:,np.newaxis] # give a new axis by np.newaxis
# solver
ntime = decoded_imgs.shape[0]#/(lat*lon)
solver = Eof(decoded_imgs.reshape(ntime,lat, lon), weights=weighted_lat)
#get analysis
eof1 = solver.eofsAsCorrelation(neofs=1)
pc1 = solver.pcs(npcs=1, pcscaling=1)
var1 = solver.varianceFraction(neigs=1)
print('Variance 1st mode %2.2f' %(var1) )
varall = solver.varianceFraction()
print('Variance all mode', varall )
print("Sum of all mode's variance = ", sum(varall))
#plotting
lons = np.asarray([x for x in range(0,lon)])
lats = lat_array
clevs = np.linspace(-1,1,11)
fig = plt.figure(figsize=(12,8))
ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=0))
fill = ax.contourf(lons, lats, eof1.squeeze(), clevs,
transform=ccrs.PlateCarree(), cmap=plt.cm.RdBu_r
)
ax.add_feature(cfeature.LAND, facecolor='w', edgecolor='k')
cb = plt.colorbar(fill, orientation='horizontal')
cb.set_label('Correlation Coefficeint', fontsize=14)
plt.title('EOF1 expressed as Correlation', fontsize=16)
plt.show()