From 5546321b2ee7edd6d8029ebc8ad757a83a19f84b Mon Sep 17 00:00:00 2001 From: Michal Danilowicz Date: Wed, 18 Sep 2024 14:50:31 +0000 Subject: [PATCH] [Deprecated] MoveLinearPastEltwiseAdd() removed from the codebase --- src/finn/transformation/streamline/reorder.py | 81 -------- .../streamline/test_linear_past_eltwise.py | 192 ------------------ 2 files changed, 273 deletions(-) delete mode 100644 tests/transformation/streamline/test_linear_past_eltwise.py diff --git a/src/finn/transformation/streamline/reorder.py b/src/finn/transformation/streamline/reorder.py index 33751cb4d8..8688145453 100644 --- a/src/finn/transformation/streamline/reorder.py +++ b/src/finn/transformation/streamline/reorder.py @@ -517,87 +517,6 @@ def apply(self, model): return (model, graph_modified) -class MoveLinearPastEltwiseAdd(Transformation): - """ - DEPRECATED, use MoveAddPastJoinAdd() and MoveMulPastJoinAdd() - Move linear operations (mul, add) past elementwise add operations where possible. - Specifically,matches and transforms the following patterns: - (x*C) + (y*C) -> (x + y) * C - (x+A) + (y+B) -> (x + y) + (A + B) - where x and y are dynamic inputs, A, B, C are constant tensors (in general). - """ - - def move_node(self, graph, n, prod0, prod1, node_ind): - # found! move one of the muls to output, remove the other one - lin0_in0 = prod0.input[0] - lin1_in0 = prod1.input[0] - in0 = n.input[0] - out = n.output[0] - # TODO: check shapes don't change through scalar mul or add - # connect the eltwise add inputs to mul inputs - n.input[0] = lin0_in0 - n.input[1] = lin1_in0 - # connect mul0 output to eltwise add output - prod0.output[0] = out - # connect the input of mul0 and output of eltwise add together - n.output[0] = in0 - prod0.input[0] = in0 - # move prod0 node past eltwise add node, and remove prod1 - graph.node.remove(prod1) - graph.node.remove(prod0) - graph.node.insert(node_ind - 2, prod0) - - def apply(self, model): - graph = model.graph - node_ind = 0 - graph_modified = False - nodes = [n for n in graph.node] - for n in nodes: - node_ind += 1 - if n.op_type == "Add": - # check for tensors on both inputs (eltwise add) - # scalar add has an initializer on one input - in0 = n.input[0] - in1 = n.input[1] - if in0 is None or in1 is None: - continue - A = model.get_initializer(in0) - B = model.get_initializer(in1) - if A is not None or B is not None: - continue - # check for mul with same initializer on both inputs - prod0 = model.find_producer(in0) - prod1 = model.find_producer(in1) - # Also check case when both branches are empty and come - # from the same node: (prod0 == prod1) - # Other transform should handle that - if prod0 is None or prod1 is None or (prod0 == prod1): - continue - if len(prod0.input) < 2 or len(prod1.input) < 2: - continue - init0 = model.get_initializer(prod0.input[1]) - init1 = model.get_initializer(prod1.input[1]) - # if either initializer is None, skip - if init0 is None or init1 is None: - continue - if prod0.op_type == "Mul" and prod1.op_type == "Mul": - if np.array_equal(init0, init1): - self.move_node(graph, n, prod0, prod1, node_ind) - node_ind -= 1 - graph_modified = True - elif prod0.op_type == "Add" and prod1.op_type == "Add": - init = init0 + init1 - # update initializer of prod0, which we'll move - model.set_initializer(prod0.input[1], init) - self.move_node(graph, n, prod0, prod1, node_ind) - node_ind -= 1 - graph_modified = True - else: - continue - model = model.transform(InferShapes()) - return (model, graph_modified) - - class MoveScalarLinearPastInvariants(Transformation): """Move scalar linear operations (mul, add) past functions which are invariant to them. Specifically, matches and transforms the following patterns: diff --git a/tests/transformation/streamline/test_linear_past_eltwise.py b/tests/transformation/streamline/test_linear_past_eltwise.py deleted file mode 100644 index 70fc395652..0000000000 --- a/tests/transformation/streamline/test_linear_past_eltwise.py +++ /dev/null @@ -1,192 +0,0 @@ -# Copyright (c) 2020, Xilinx -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions are met: -# -# * Redistributions of source code must retain the above copyright notice, this -# list of conditions and the following disclaimer. -# -# * Redistributions in binary form must reproduce the above copyright notice, -# this list of conditions and the following disclaimer in the documentation -# and/or other materials provided with the distribution. -# -# * Neither the name of FINN nor the names of its -# contributors may be used to endorse or promote products derived from -# this software without specific prior written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -import pytest - -import numpy as np -import os -from onnx import TensorProto, helper -from qonnx.core.modelwrapper import ModelWrapper -from qonnx.transformation.fold_constants import FoldConstants -from qonnx.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames -from qonnx.transformation.infer_shapes import InferShapes -from qonnx.util.basic import qonnx_make_model - -import finn.core.onnx_exec as oxe -from finn.transformation.streamline.reorder import MoveLinearPastEltwiseAdd - -export_onnx_path = "test_linear_past_eltwise.onnx" -np_default_dtype = np.float32 - -# construct a synthetic graph to test: -# topk insertion, topk conversion to hls, add conversion to hls -# graph should just be a sum - - -def make_model(shape): - inp1 = helper.make_tensor_value_info("inp1", TensorProto.FLOAT, shape) - inp2 = helper.make_tensor_value_info("inp2", TensorProto.FLOAT, shape) - inp1_add = helper.make_tensor_value_info("inp1_add", TensorProto.FLOAT, shape) - inp1_add_ct = helper.make_tensor_value_info("inp1_add_ct", TensorProto.FLOAT, [1]) - inp2_add = helper.make_tensor_value_info("inp2_add", TensorProto.FLOAT, shape) - inp2_add_ct = helper.make_tensor_value_info("inp2_add_ct", TensorProto.FLOAT, [1]) - inp1_mul = helper.make_tensor_value_info("inp1_mul", TensorProto.FLOAT, shape) - inp1_mul_ct = helper.make_tensor_value_info("inp1_mul_ct", TensorProto.FLOAT, [1]) - inp2_mul = helper.make_tensor_value_info("inp2_mul", TensorProto.FLOAT, shape) - inp2_mul_ct = helper.make_tensor_value_info("inp2_mul_ct", TensorProto.FLOAT, [1]) - outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, shape) - - add1_node = helper.make_node("Add", [inp1.name, inp1_add_ct.name], [inp1_add.name]) - add2_node = helper.make_node("Add", [inp2.name, inp2_add_ct.name], [inp2_add.name]) - mul1_node = helper.make_node("Mul", [inp1_add.name, inp1_mul_ct.name], [inp1_mul.name]) - mul2_node = helper.make_node("Mul", [inp2_add.name, inp2_mul_ct.name], [inp2_mul.name]) - eltwise_add_node = helper.make_node("Add", [inp1_mul.name, inp2_mul.name], [outp.name]) - graph = helper.make_graph( - nodes=[add1_node, add2_node, mul1_node, mul2_node, eltwise_add_node], - name="graph", - inputs=[inp1, inp2], - outputs=[outp], - ) - - model = qonnx_make_model(graph, producer_name="add-model") - model = ModelWrapper(model) - - # set initializers for scalar add/mul nodes - model.set_initializer(add1_node.input[1], np.array([7.0], dtype=np_default_dtype)) - model.set_initializer(add2_node.input[1], np.array([8.0], dtype=np_default_dtype)) - model.set_initializer(mul1_node.input[1], np.array([3.0], dtype=np_default_dtype)) - model.set_initializer(mul2_node.input[1], np.array([3.0], dtype=np_default_dtype)) - - return model - - -@pytest.mark.streamline -# channels -@pytest.mark.parametrize("ch", [64]) -# ifmdim -@pytest.mark.parametrize("ifmdim", [-1, 7]) -def test_linear_past_eltwise_add(ch, ifmdim): - # generate test vectors of correct shape - if ifmdim == -1: - input_tensor_shape = (1, ch) - else: - input_tensor_shape = (1, ch, ifmdim, ifmdim) - - model = make_model(input_tensor_shape) - model.save(export_onnx_path) - model = ModelWrapper(export_onnx_path) - model = model.transform(InferShapes()) - model = model.transform(FoldConstants()) - model = model.transform(GiveUniqueNodeNames()) - model = model.transform(GiveReadableTensorNames()) - - x1 = np.random.randn(*input_tensor_shape).astype(np.float32) - x2 = np.random.randn(*input_tensor_shape).astype(np.float32) - - # generate expected value from streamlined net - input_dict = {model.graph.input[0].name: x1, model.graph.input[1].name: x2} - - output_dict = oxe.execute_onnx(model, input_dict, True) - produced_sum = output_dict[model.graph.output[0].name] - expected_sum = 3.0 * ((x1 + x2) + 15.0) - assert np.isclose(expected_sum, produced_sum, atol=1e-3).all() - assert len(model.get_nodes_by_op_type("Add")) == 3 - assert len(model.get_nodes_by_op_type("Mul")) == 2 - - model = model.transform(MoveLinearPastEltwiseAdd()) - - # verify again, to check we didnt break anything - output_dict = oxe.execute_onnx(model, input_dict, True) - produced_sum = output_dict[model.graph.output[0].name] - assert np.isclose(expected_sum, produced_sum, atol=1e-3).all() - assert len(model.get_nodes_by_op_type("Add")) == 2 - assert len(model.get_nodes_by_op_type("Mul")) == 1 - - os.remove(export_onnx_path) - - -@pytest.mark.streamline -@pytest.mark.parametrize("ch", [64, 1]) -# ifmdim -@pytest.mark.parametrize("ifmdim", [-1, 7]) -def test_linear_past_eltwise_add_multiple_forks(ch, ifmdim): - # generate test vectors of correct shape - if ifmdim == -1: - input_shape = (1, ch) - else: - input_shape = (1, ch, ifmdim, ifmdim) - - top_in = helper.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) - top_out = helper.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape) - - num_of_params = 6 - value_info = [] - for i in range(num_of_params): - value_info += [helper.make_tensor_value_info("p" + str(i), TensorProto.FLOAT, input_shape)] - - modelproto = qonnx_make_model( - helper.make_graph( - name="test", - inputs=[top_in], - outputs=[top_out], - value_info=value_info, - nodes=[ - helper.make_node("Add", ["top_in", "p0"], ["fork1"]), - helper.make_node("Mul", ["fork1", "p1"], ["t2"]), - helper.make_node("Mul", ["fork1", "p2"], ["t3"]), - helper.make_node("Add", ["t2", "t3"], ["t4"]), - helper.make_node("Mul", ["t4", "p3"], ["fork2"]), - helper.make_node("Add", ["fork2", "p4"], ["t5"]), - helper.make_node("Add", ["fork2", "p5"], ["t6"]), - helper.make_node("Add", ["t5", "t6"], ["top_out"]), - ], - ) - ) - model = ModelWrapper(modelproto) - model = model.transform(InferShapes()) - - np.random.seed(0) - for i in range(num_of_params): - model.set_initializer("p" + str(i), np.random.rand(*input_shape).astype(np.float32)) - - # need equal mults: - model.set_initializer("p2", model.get_initializer("p1")) - - # Transform - new_model = model.transform(MoveLinearPastEltwiseAdd()) - inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} - - # Test - assert oxe.compare_execution(model, new_model, inp_dict) - assert new_model.graph.node[0].op_type == "Add" - assert new_model.graph.node[1].op_type == "Add" - assert new_model.graph.node[2].op_type == "Mul" - assert new_model.graph.node[3].op_type == "Mul" - assert new_model.graph.node[4].op_type == "Add" - assert new_model.graph.node[5].op_type == "Add" - assert len(new_model.graph.node) == 6