-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_gridsearch.py
157 lines (133 loc) · 5.35 KB
/
find_gridsearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from src.device import Tokamak
from src.profile import Profile
from src.source import CDsource
from src.env import Enviornment
from src.rl.reward import RewardSender
from src.utility import plot_optimization_status, find_optimal_case
from src.gridsearch.brute_force import search_param_space
from config.device_info import config_benchmark, config_liquid
import pickle
import argparse, os, warnings
warnings.filterwarnings(action = 'ignore')
def parsing():
parser = argparse.ArgumentParser(description="Tokamak design optimization based on Brute force algorithm")
# Select blanket type: liquid / solid
parser.add_argument("--blanket_type", type = str, default = "solid", choices = ['liquid','solid'])
# Setup
parser.add_argument("--num_episode", type = int, default = 10000)
parser.add_argument("--verbose", type = int, default = 1000)
parser.add_argument("--n_grid", type = int, default = 10)
# Reward setup
parser.add_argument("--w_cost", type = float, default = 0.1)
parser.add_argument("--w_tau", type = float, default = 0.1)
parser.add_argument("--w_beta", type = float, default = 0.5)
parser.add_argument("--w_density", type = float, default = 0.5)
parser.add_argument("--w_q", type = float, default = 1.0)
parser.add_argument("--w_bs", type = float, default = 1.0)
parser.add_argument("--w_i", type = float, default = 1.5)
parser.add_argument("--w_geo", type = float, default = 1.0)
parser.add_argument("--cost_r", type = float, default = 1.0)
parser.add_argument("--tau_r", type = float, default = 1.0)
parser.add_argument("--a", type = float, default = 1.0)
parser.add_argument("--reward_fail", type = float, default = -1.0)
args = vars(parser.parse_args())
return args
if __name__ == "__main__":
args = parsing()
if args['blanket_type'] == 'liquid':
config = config_liquid
else:
config = config_benchmark
profile = Profile(
nu_T = config["nu_T"],
nu_p = config["nu_p"],
nu_n = config["nu_n"],
n_avg = config["n_avg"],
T_avg = config["T_avg"],
p_avg = config['p_avg']
)
source = CDsource(
conversion_efficiency = config['conversion_efficiency'],
absorption_efficiency = config['absorption_efficiency'],
)
tokamak = Tokamak(
profile,
source,
betan = config['betan'],
Q = config['Q'],
k = config['k'],
epsilon = config['epsilon'],
tri = config['tri'],
thermal_efficiency = config['thermal_efficiency'],
electric_power = config['electric_power'],
armour_thickness = config['armour_thickness'],
armour_density = config['armour_density'],
armour_cs = config['armour_cs'],
maximum_wall_load = config['maximum_wall_load'],
maximum_heat_load = config['maximum_heat_load'],
shield_density = config['shield_density'],
shield_depth = config['shield_depth'],
shield_cs = config['shield_cs'],
Li_6_density = config['Li_6_density'],
Li_7_density = config['Li_7_density'],
slowing_down_cs= config['slowing_down_cs'],
breeding_cs= config['breeding_cs'],
E_thres = config['E_thres'],
pb_density = config['pb_density'],
scatter_cs_pb=config['cs_pb_scatter'],
multi_cs_pb=config['cs_pb_multi'],
B0 = config['B0'],
H = config['H'],
maximum_allowable_J = config['maximum_allowable_J'],
maximum_allowable_stress = config['maximum_allowable_stress'],
RF_recirculating_rate= config['RF_recirculating_rate'],
flux_ratio = config['flux_ratio']
)
reward_sender = RewardSender(
w_cost = args['w_cost'],
w_tau = args['w_tau'],
w_beta = args['w_beta'],
w_density=args['w_density'],
w_q = args['w_q'],
w_bs = args['w_bs'],
w_i = args['w_i'],
w_geo = args['w_geo'],
cost_r = args['cost_r'],
tau_r = args['tau_r'],
a = args['a'],
reward_fail = args['reward_fail']
)
init_action = {
'betan':config['betan'],
'k':config['k'],
'epsilon' : config['epsilon'],
'electric_power' : config['electric_power'],
'T_avg' : config['T_avg'],
'B0' : config['B0'],
'H' : config['H'],
"armour_thickness" : config['armour_thickness'],
"RF_recirculating_rate": config['RF_recirculating_rate'],
}
init_state = tokamak.get_design_performance()
env = Enviornment(tokamak, reward_sender, init_state, init_action)
# directory
if not os.path.exists("./results"):
os.makedirs("./results")
tag = "gridsearch_{}".format(args['blanket_type'])
save_result = "./results/params_search_{}.pkl".format(tag)
# Design optimization
print("============ Design optimization ============")
result = search_param_space(
env,
args['num_episode'],
args['verbose'],
args['n_grid']
)
print("======== Logging optimization process ========")
optimization_status = env.optim_status
plot_optimization_status(optimization_status, args['verbose'], "./results/gridsearch_optimization")
with open(save_result, 'wb') as file:
pickle.dump(result, file)
# save optimal design information
find_optimal_case(result, {"save_dir":"./results", "tag":"gridsearch"})
env.close()