forked from bashnick/transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
199 lines (177 loc) · 7.37 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
from torch.nn import functional as F
from utils import DEVICE
class AttentionHead(nn.Module):
"""
One head of the self-attention layer
"""
def __init__(self, head_size, num_embed, block_size, dropout):
super().__init__()
self.key = nn.Linear(num_embed, head_size, bias=False)
self.query = nn.Linear(num_embed, head_size, bias=False)
self.value = nn.Linear(num_embed, head_size, bias=False)
# tril is a lower triangular matrix. it is not a parameter
# of the model, so we assign it to the module using register_buffer
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
# let's also add dropout
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
# compute attention scores
# (B, T, C) @ (B, C, T) -> (B, T, T)
wei = q @ k.transpose(-2, -1) * C**-0.5
# Tril matrix (lower triagular matrix) is used to mask
# future positions (setting them to -inf) so that the
# decoder "learns" to predict next words
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) # (B,T,T)
wei = F.softmax(wei, dim=-1) # (B,T,T)
wei = self.dropout(wei)
# weighted aggregation of the values
v = self.value(x)
out = wei @ v # (B,T,T) @ (B,T,C) ---> (B,T,C)
return out
class MultiHeadAttention(nn.Module):
"""
Multiple Heads of self-attention in parallel
"""
def __init__(self, num_heads, head_size, num_embed, block_size, dropout):
super().__init__()
self.heads = nn.ModuleList(
[
AttentionHead(
head_size=head_size,
num_embed=num_embed,
block_size=block_size,
dropout=dropout,
)
for _ in range(num_heads)
]
)
self.proj = nn.Linear(num_embed, num_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# output of the self-attention
out = torch.cat([h(x) for h in self.heads], dim=-1)
# apply the linear projection layer
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
"""
A simple linear layer followed by ReLu
"""
def __init__(self, num_embed, dropout):
super().__init__()
self.net = nn.Sequential(
# in the Attention is All You Need paper
# authors are using the size of the ffwd layer 2048
# and the output of the model is 512
# so we apply the same factor of 4
nn.Linear(num_embed, 4 * num_embed),
nn.ReLU(),
# apply the linear projection layer
nn.Linear(4 * num_embed, num_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class TransformerBlock(nn.Module):
"""
This calss will group together MultiHead Attention and
FeedForward NN, so that we can copy it in Transformer
"""
def __init__(self, num_heads, block_size, num_embed, dropout):
super().__init__()
head_size = num_embed // num_heads
self.sa = MultiHeadAttention(
num_heads=num_heads,
head_size=head_size,
num_embed=num_embed,
block_size=block_size,
dropout=dropout,
)
self.ffwd = FeedForward(num_embed=num_embed, dropout=dropout)
# add the layer normalization
self.ln1 = nn.LayerNorm(num_embed)
self.ln2 = nn.LayerNorm(num_embed)
def forward(self, x):
# "x +" is the skip (or residual) connection
# it helps with optimization
# also we apply layer normalization before self-attention
# and feed-forward (a reshufle from original paper)
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class Transformer(nn.Module):
def __init__(self, **kwargs):
super().__init__()
# a simple lookup table that stores embeddings of a fixed dictionary and size
# each token directly reads off the logits for the next token from a lookup table
# see more: https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
self.vocab_size = kwargs.get("vocab_size", 100)
self.num_embed = kwargs.get("num_embed", 32)
self.block_size = kwargs.get("block_size", 8)
self.num_heads = kwargs.get("num_heads", 4)
self.num_layers = kwargs.get("num_layers", 4)
self.dropout = kwargs.get("dropout", 0.2)
# each token reads the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(self.vocab_size, self.num_embed)
# each position from 0 to block_size-1 will get its embedding
self.position_embedding_table = nn.Embedding(self.block_size, self.num_embed)
self.blocks = nn.Sequential(
*[
TransformerBlock(
num_heads=self.num_heads,
block_size=self.block_size,
num_embed=self.num_embed,
dropout=self.dropout,
)
for _ in range(self.num_layers)
]
)
# we add the layer norm before the Linear layer
self.ln_f = nn.LayerNorm(self.num_embed)
self.lm_head = nn.Linear(self.num_embed, self.vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are (B,T) tensor of integers
# the token_emb is (B, T, C), C = NUM_EMBED
token_emb = self.token_embedding_table(idx)
# (T, C)
posit_emb = self.position_embedding_table(torch.arange(T, device=DEVICE))
x = token_emb + posit_emb
# apply one head of self-attention
x = self.blocks(x)
# (B, T, vocab_size)
logits = self.lm_head(x)
# compute the loss
if targets != None:
# cross_entropy accepts inputs in a (batch_size, num_classes)
# so we need to reformat our logits dimensions to
# (batch_size * time, dim_vocabulary), time = block_size
B, T, C = logits.shape
logits = torch.reshape(logits, (B * T, C))
targets = torch.reshape(targets, (B * T,))
loss = F.cross_entropy(logits, targets)
else:
loss = None
return logits, loss
def generate(self, idx: torch.Tensor, max_new_tokens: int, block_size: int):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop the context too the last block_size tokens
# because tokens don't communicate between blocks
idx_crop = idx[:, -block_size:]
# get the predictions
logits, loss = self.forward(idx_crop)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution with probabilities probs
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx