-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson_parser.py
174 lines (142 loc) · 5.73 KB
/
json_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from __future__ import annotations
import string
from typing import Union, Sequence, Mapping, Any, Tuple
from treelib import Tree, Node
from numbers import Number
from more_itertools import sort_together, split_when, bucket
from itertools import groupby
from collections import namedtuple
import torch
NodeData = namedtuple('NodeData', ['type', 'data'])
def is_primitive(node):
return (
isinstance(node, Number)
or isinstance(node, bool)
or isinstance(node, str)
or node is None
)
def node_type(node):
if isinstance(node, Number):
return '___number___'
elif isinstance(node, bool):
return '___bool___'
elif isinstance(node, str):
return '___string___'
elif isinstance(node, dict):
return '___object___'
elif isinstance(node, list):
return '___array___'
elif node is None:
return '___null___'
else:
raise ValueError('node must be of type numbers.Number, bool, str, or NoneType')
def is_array(node):
return (
isinstance(node, list)
or isinstance(node, tuple)
)
def is_object(node):
return isinstance(node, dict)
class JSONParseTree(Tree):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.all_characters = string.printable
self.num_characters = len(self.all_characters)
@classmethod
def parse_start(cls, root_name: str, node: Any) -> JSONParseTree:
tree = cls()
tree.create_node(tag=root_name, identifier=(root_name,), data=NodeData(node_type(node), None))
if is_array(node):
for i, child in enumerate(node):
tree.parse_object((root_name,), str(i), child)
elif is_object(node):
for child_name, child in node.items():
tree.parse_object((root_name,), child_name, child)
return tree
def parse_object(self, parent_path: tuple, name: str, node: Any):
if is_primitive(node):
self.create_node(
tag=name,
identifier=parent_path + (name,),
parent=parent_path,
data=NodeData(node_type(node), node)
)
elif is_array(node):
self.create_node(
tag=name,
identifier=(new_path := parent_path + (name,)),
parent=parent_path,
data=NodeData('___array___', None)
)
for i, child in enumerate(node):
self.parse_object(new_path, str(i), child)
elif is_object(node):
self.create_node(
tag=name,
identifier=(new_path := parent_path + (name,)),
parent=parent_path,
data=NodeData('___dict___', None))
for child_name, child in node.items():
self.parse_object(new_path, child_name, child)
def leaf_data(self) -> Tuple[Tuple, NodeData]:
for leaf in self.leaves():
yield leaf.identifier, leaf.data
def leaf_tensors(self) -> Tuple[Tuple, Any]:
for leaf in self.leaves():
if isinstance(leaf.data, Number) or isinstance(leaf.data, bool):
data = torch.Tensor([[leaf.data]])
elif isinstance(leaf.data, str):
data = torch.LongTensor(
[self.all_characters.index(char) for char in leaf.data]
)
else:
data = torch.zeros(1, 1)
yield leaf.identifier, data
def __eq__(self, other):
if not isinstance(other, JSONParseTree):
return False
self_nodes = sorted(self.nodes)
other_nodes = sorted(other.nodes)
return self_nodes == other_nodes
def __hash__(self):
return hash(tuple(sorted(self.nodes)))
if __name__ == '__main__':
from pprint import pprint
import json
array = [{"test": {"iest": ['stest', [1, 2, 3]]}, "other": [None, 1, True], "empty": [], "empty_2": {}}] * 3
some_json = json.loads(r"""
[{"n": "OO_temp_sensor", "t": 0, "u": "K", "v": 290.02483570765054},
{"n": "CC_temp_sensor", "t": 0, "u": "K", "v": 290.032384426905},
{"n": "NW_temp_sensor", "t": 0, "u": "K", "v": 289.98829233126384},
{"n": "NW_Heater", "t": 0, "u": "W", "v": 185.8732269977827},
{"n": "NN_temp_sensor", "t": 0, "u": "K", "v": 290.0789606407754},
{"n": "NN_Heater", "t": 0, "u": "W", "v": 171.3662974759336},
{"n": "NE_temp_sensor", "t": 0, "u": "K", "v": 289.97652628070324}
]
""")
trees = [JSONParseTree.parse_start('___root___', arr) for arr in some_json]
sample_identifiers, sample_index, sample_data = sort_together([*zip(*[
(leaf_identifier, i, leaf_data) for i, tree in enumerate(trees)
for leaf_identifier, leaf_data in tree.leaf_tensors()
])])
from prettytable import PrettyTable
def sample_table(identifiers, index, data):
table = PrettyTable(('Identifier', 'Batch index', 'Data'))
for id, idx, dat in zip(identifiers, index, data):
table.add_row([id, idx, dat])
print(table)
sample_table(sample_identifiers, sample_index, sample_data)
# pprint(list(split_when(zip(sample_identifiers, sample_index, sample_data), lambda x, y: x[0] != y[0])))
import torch
buck = {k: [sorted_elem
if not isinstance(sorted_elem, str) and sorted_elem is not None else sorted_elem
for sorted_elem in
zip(*sorted(elem[1:] for elem in g))]
for k, g in groupby(
zip(
sample_identifiers,
sample_index,
sample_data
), lambda x: x[0]
)}
pprint(buck)