-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathsegvideo.py
259 lines (196 loc) · 7.35 KB
/
segvideo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import numpy as np
import cv2
import sys
import time
import keras
from keras.models import Model
from keras.models import load_model
def image_stats(image):
# Compute the mean and standard deviation of each channel
(l, a, b) = cv2.split(image)
(lMean, lStd) = (l.mean(), l.std())
(aMean, aStd) = (a.mean(), a.std())
(bMean, bStd) = (b.mean(), b.std())
# Return the color statistics
return (lMean, lStd, aMean, aStd, bMean, bStd)
def color_transfer(source, target):
# Convert images to UINT8 (0-255)
source = np.uint8(source*255.0)
target = np.uint8(target*255.0)
# Convert the images from the RGB to L*ab* color space
source = cv2.cvtColor(source, cv2.COLOR_RGB2LAB).astype("float32")
target = cv2.cvtColor(target, cv2.COLOR_RGB2LAB).astype("float32")
# Compute color statistics for the source and target images
(lMeanSrc, lStdSrc, aMeanSrc, aStdSrc, bMeanSrc, bStdSrc) = image_stats(source)
(lMeanTar, lStdTar, aMeanTar, aStdTar, bMeanTar, bStdTar) = image_stats(target)
# Subtract the means from the target image
(l, a, b) = cv2.split(target)
l -= lMeanTar
a -= aMeanTar
b -= bMeanTar
# Scale by the standard deviations
l = (lStdTar / lStdSrc) * l
a = (aStdTar / aStdSrc) * a
b = (bStdTar / bStdSrc) * b
# Add in the source mean
l += lMeanSrc
a += aMeanSrc
b += bMeanSrc
# Clip the pixel intensities to [0, 255]
l = np.clip(l, 0, 255)
a = np.clip(a, 0, 255)
b = np.clip(b, 0, 255)
# Merge the channels together and convert back to the RGB format
transfer = cv2.merge([l, a, b])
transfer = cv2.cvtColor(transfer.astype("uint8"), cv2.COLOR_LAB2RGB)
# Convert image to float (0-1)
transfer=transfer/255.0
# Return the color transferred image
return transfer
def smoothstep(edge0, edge1, x) :
# Scale, bias and saturate x to 0..1 range
x = np.clip((x - edge0) / (edge1 - edge0), 0.0, 1.0)
#Evaluate polynomial
return x * x * (3 - 2 * x)
def seamlessclone(source, mask):
# Convert images to UINT8 (0-255)
src=np.uint8(source*255.0)
dst = np.uint8(bgd*255.0)
msk=np.uint8(mask*255.0)
# Dilate the mask
kernel = np.ones((7,7),np.uint8)
msk = cv2.dilate(msk,kernel,iterations = 1)
# Convert images to BGR format
src = cv2.cvtColor(src, cv2.COLOR_RGB2BGR)
dst = cv2.cvtColor(dst, cv2.COLOR_RGB2BGR)
# Clone size
clone_size=tgt_size-2
# Resize images
src = cv2.resize(src, (clone_size,clone_size),interpolation = cv2.INTER_LINEAR)
msk = cv2.resize(msk, (clone_size,clone_size),interpolation = cv2.INTER_LINEAR)
# Find contours of mask ROI
contours, hierarchy = cv2.findContours(msk, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
largest = max(contours, key = cv2.contourArea)
# Find ROI co-ordinates
(x,y,w,h) = cv2.boundingRect(largest)
X = x+w//2
Y = clone_size-h//2
# Get ROI center
center = (X,Y)
#print(X+w//2,Y+h//2)
# Seamless cloning
clone = cv2.seamlessClone(src, dst, msk, center, cv2.NORMAL_CLONE)
clone = cv2.cvtColor(clone, cv2.COLOR_BGR2RGB)
return clone
def change_bgd(x):
# Select background image
global bgd
if x == 0:
bgd = cv2.resize(cv2.imread('test/desert.jpg'), (tgt_size,tgt_size))
bgd = cv2.cvtColor(bgd, cv2.COLOR_BGR2RGB)/255.0
elif x == 1:
bgd = cv2.resize(cv2.imread('test/ocean.jpeg'), (tgt_size,tgt_size))
bgd = cv2.cvtColor(bgd, cv2.COLOR_BGR2RGB)/255.0
elif x == 2:
bgd = cv2.resize(cv2.imread('test/sky.jpg'), (tgt_size,tgt_size))
bgd = cv2.cvtColor(bgd, cv2.COLOR_BGR2RGB)/255.0
elif x == 3:
bgd = cv2.resize(cv2.imread('test/sunset.jpg'), (tgt_size,tgt_size))
bgd = cv2.cvtColor(bgd, cv2.COLOR_BGR2RGB)/255.0
else:
bgd = cv2.resize(cv2.imread('test/blue.jpg'), (tgt_size,tgt_size))
bgd = cv2.cvtColor(bgd, cv2.COLOR_BGR2RGB)/255.0
def harmonize(image, mask):
# Convert image to BGR format
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Resize the images
image=np.float32( cv2.resize(image,(512,512)) )
mask=np.float32( cv2.resize(mask, (512,512)) ) - 128.0
# Generate blob inputs from images
blobimg = cv2.dnn.blobFromImage(image, 1, (512, 512), (104.00699, 116.66877, 122.67892))
blobmsk = cv2.dnn.blobFromImage(mask, 1, (512, 512))
# Feed the inputs
net.setInput(blobimg,'data')
net.setInput(blobmsk,'mask')
# Predict the output
start = time.time()
pred = net.forward()
end = time.time()
print('Time: '+str(end-start))
# Add mean to output
res = pred[0].transpose((1,2,0))
res += np.array((104.00699, 116.66877, 122.67892))
res = res[:,:,::-1]
# Clip pixel values
res=np.clip(res,0.0,255.0)
# Resize the output image
img = res.astype(np.uint8)
img = cv2.resize(img,(tgt_size,tgt_size))
return img
# Load the model and background image
model = load_model('models/transpose_seg/deconv_bnoptimized_munet.h5', compile=False)
# Load the caffe model for colour harmonization
prototxt='models/caffe/deploy_512.prototxt'
weights='models/caffe/harmonize_iter_200000_fp16.caffemodel'
net = cv2.dnn.readNetFromCaffe(prototxt, weights)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL_FP16)
# Target size
tgt_size=300
# Convert background to float [0-1]
bgd = cv2.resize(cv2.imread(sys.argv[1]), (tgt_size,tgt_size))
bgd = cv2.cvtColor(bgd, cv2.COLOR_BGR2RGB)/255.0
# Initialize video capturer
cap = cv2.VideoCapture(0)
# Create a named window
cv2.namedWindow('portrait segmentation')
# Create trackbars for background selection
cv2.createTrackbar('BGD','portrait segmentation',0,4,change_bgd)
while(True):
# Get keyboard input
key = cv2.waitKey(2) & 0xFF
if key == ord('c'):
filter='color_transfer'
elif key == ord('s'):
filter='seamless_clone'
elif key == ord('m'):
filter='smooth_step'
elif key == ord('h'):
filter='colour_harmonize'
# Capture frame-by-frame
ret, frame = cap.read()
if ret:
# Pre-process
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
simg = cv2.resize(img,(128,128),interpolation=cv2.INTER_AREA)
simg = simg.reshape((1,128,128,3))/255.0
# Predict
out=model.predict(simg)
orimsk=np.float32((out>0.5)).reshape((128,128,1))
# Post-process
msk=cv2.GaussianBlur(orimsk,(7,7),1)
img=cv2.resize(img, (tgt_size,tgt_size))/255.0
msk=cv2.resize(msk, (tgt_size,tgt_size)).reshape((tgt_size,tgt_size,1))
# Colour transfer
if filter=='color_transfer':
img=color_transfer(bgd,img)
# Smooth step
elif filter=='smooth_step':
msk=smoothstep(0.3, 0.5,msk)
# Seamless clone
elif filter=='seamless_clone':
frame=seamlessclone(img, orimsk)
# Alpha blending
if filter!='seamless_clone' :
frame = (img * msk) + (bgd * (1 - msk))
frame = np.uint8(frame*255.0)
mask = np.uint8(msk*255.0)
if filter=='colour_harmonize' :
frame=harmonize(frame,mask)
# Display the resulting frame
cv2.imshow('portrait segmentation',frame[...,::-1])
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capturer
cap.release()
cv2.destroyAllWindows()
# Sample run: python segvideo.py test/sunset.jpg