-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathby_sizeIndependent.py
100 lines (75 loc) · 3.61 KB
/
by_sizeIndependent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Effects of amount of data
from src.models import EEGNet
from src.dataloader import SpeechDataset
from collections import defaultdict
import tensorflow as tf
from tensorflow.keras import utils as np_utils
import numpy as np
import parameters as p
import argparse
from tqdm import tqdm
import random
parser = argparse.ArgumentParser(description='Experiments by condition (rest, perception and production)')
parser.add_argument('--num_runs', type=int, default=30, help="Number of repetitions")
parser.add_argument('--window', type=int, default=750, help="Window length in samples")
parser.add_argument('--task', type=str, help="Task of dataset (perception or production)")
parser.add_argument('--stims', type=int, default=5, help="Num of stims")
parser.add_argument('--shuffle', type=bool, default=False)
args = parser.parse_args()
STIMS = list(range(1,31)[:args.stims])
for num_subjects in range(2, 60):
P = defaultdict(list)
for iteration in tqdm(range(args.num_runs)):
all_subjects = random.choices(p.SUBJECTS, k=num_subjects)
test_subject = random.choices(all_subjects, k=1)
train_subjects = [sub for sub in all_subjects if sub != test_subject[0]]
# TRAIN SET
speech_dataset = SpeechDataset(p.DATASET,
window=args.window,
shuffle_labels = args.shuffle,
stims=STIMS,
tasks=[args.task],
subjects=train_subjects)
X_train, Y_train, _, _ = speech_dataset.balanced_split(takes=0, shuffle_labels=args.shuffle)
# TEST SET
speech_dataset = SpeechDataset(p.DATASET,
window=args.window,
shuffle_labels = args.shuffle,
stims=STIMS,
tasks=[args.task],
subjects=test_subject)
X_test, Y_test, _, _= speech_dataset.balanced_split(takes=0, shuffle_labels=args.shuffle)
# One-hot encoding of labels
Y_train = np_utils.to_categorical(Y_train-1)
Y_test = np_utils.to_categorical(Y_test-1)
### model ###
model = EEGNet(len(STIMS), Chans = 14, Samples = args.window,
dropoutRate = 0.25, kernLength = 125, F1 = 8,
D = 2, F2 = 16, norm_rate = 0.25, dropoutType = 'Dropout')
#model.summary()
loss = 'categorical_crossentropy'
model.compile(loss=loss, optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
metrics = ['accuracy'])
### Training ###
# Early stopping
early_stopping_callbcak = tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
min_delta=0.001,
patience=3
)
history = model.fit(X_train, Y_train,
batch_size = 32,
epochs = 200,
verbose = 1,
validation_data=(X_test, Y_test),
callbacks=[early_stopping_callbcak])
y_pred = model.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
y_true = np.argmax(Y_test, axis=1)
# Convert to python int
y_pred = [int(i) for i in y_pred]
y_true = [int(i) for i in y_true]
P[f'run_{iteration}/y_pred'].extend(y_pred)
P[f'run_{iteration}/y_true'].extend(y_true)
#results[f"{i}_{j}"].append(history.history['val_accuracy'][-5])
np.save(f'results/sizeIndependent/{num_subjects}_task_{args.task}_shuffle_{args.shuffle}', P)