-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathLoRa-SDR-Code.h
626 lines (537 loc) · 20.7 KB
/
LoRa-SDR-Code.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// NOTE: https://github.com/cnlohr/lorasoft/lib/LoRa-SDR-Code.h - IS UPSTREAM VERSION
/* This code is lifted from LoRa-SDR. I found this copyright at the top
of one of their files:
// Copyright (c) 2016-2016 Lime Microsystems
// Copyright (c) 2016-2016 Arne Hennig
// SPDX-License-Identifier: BSL-1.0
// from https://github.com/myriadrf/LoRa-SDR/blob/master/LoRaEncoder.cpp
Hopefully that covers some of the other stuff.
For any portions of this file not covered under the above licensing terms, it
they shall be governed by the MIT License
Copyright (c) 2024 Charles Lohr "CNLohr"
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef _LORAENCODER_H
#define _LORAENCODER_H
// From LoRaCodes.hpp
#include <string.h>
/***********************************************************************
* Defines
**********************************************************************/
#define HEADER_RDD 4
#define N_HEADER_SYMBOLS (HEADER_RDD + 4)
/***********************************************************************
* Round functions
**********************************************************************/
static unsigned roundUp(unsigned num, unsigned factor)
{
return ((num + factor - 1) / factor) * factor;
}
/***********************************************************************
* Simple 8-bit checksum routine
**********************************************************************/
static uint8_t checksum8(const uint8_t *p, const size_t len)
{
uint8_t acc = 0;
for (size_t i = 0; i < len; i++)
{
acc = (acc >> 1) + ((acc & 0x1) << 7); //rotate
acc += p[i]; //add
}
return acc;
}
static uint8_t headerChecksum(const uint8_t *h) {
int a0 = (h[0] >> 4) & 0x1;
int a1 = (h[0] >> 5) & 0x1;
int a2 = (h[0] >> 6) & 0x1;
int a3 = (h[0] >> 7) & 0x1;
int b0 = (h[0] >> 0) & 0x1;
int b1 = (h[0] >> 1) & 0x1;
int b2 = (h[0] >> 2) & 0x1;
int b3 = (h[0] >> 3) & 0x1;
int c0 = (h[1] >> 0) & 0x1;
int c1 = (h[1] >> 1) & 0x1;
int c2 = (h[1] >> 2) & 0x1;
int c3 = (h[1] >> 3) & 0x1;
uint8_t res;
res = (a0 ^ a1 ^ a2 ^ a3) << 4;
res |= (a3 ^ b1 ^ b2 ^ b3 ^ c0) << 3;
res |= (a2 ^ b0 ^ b3 ^ c1 ^ c3) << 2;
res |= (a1 ^ b0 ^ b2 ^ c0 ^ c1 ^ c2) << 1;
res |= a0 ^ b1 ^ c0 ^ c1 ^ c2 ^ c3;
return res;
}
static uint16_t crc16sx(uint16_t crc, const uint16_t poly) {
for (int i = 0; i < 8; i++) {
if (crc & 0x8000) {
crc = (crc << 1) ^ poly;
}
else {
crc <<= 1;
}
}
return crc;
}
static uint8_t xsum8(uint8_t t) {
t ^= t >> 4;
t ^= t >> 2;
t ^= t >> 1;
return (t & 1);
}
/***********************************************************************
* CRC reverse engineered from Sx1272 data stream.
* Modified CCITT crc with masking of the output with an 8bit lfsr
**********************************************************************/
static uint16_t sx1272DataChecksum(const uint8_t *data, int length) {
uint16_t res = 0;
uint8_t v = 0xff;
uint16_t crc = 0;
for (int i = 0; i < length; i++) {
crc = crc16sx(res, 0x1021);
v = xsum8(v & 0xB8) | (v << 1);
res = crc ^ data[i];
}
res ^= v;
v = xsum8(v & 0xB8) | (v << 1);
res ^= v << 8;
return res;
}
/***********************************************************************
* http://www.semtech.com/images/datasheet/AN1200.18_AG.pdf
**********************************************************************/
static void SX1232RadioComputeWhitening( uint8_t *buffer, uint16_t bufferSize )
{
uint8_t WhiteningKeyMSB; // Global variable so the value is kept after starting the
uint8_t WhiteningKeyLSB; // de-whitening process
WhiteningKeyMSB = 0x01; // Init value for the LFSR, these values should be initialize only
WhiteningKeyLSB = 0xFF; // at the start of a whitening or a de-whitening process
// *buffer is a char pointer indicating the data to be whiten / de-whiten
// buffersize is the number of char to be whiten / de-whiten
// >> The whitened / de-whitened data are directly placed into the pointer
uint8_t i = 0;
uint16_t j = 0;
uint8_t WhiteningKeyMSBPrevious = 0; // 9th bit of the LFSR
for( j = 0; j < bufferSize; j++ ) // byte counter
{
buffer[j] ^= WhiteningKeyLSB; // XOR between the data and the whitening key
for( i = 0; i < 8; i++ ) // 8-bit shift between each byte
{
WhiteningKeyMSBPrevious = WhiteningKeyMSB;
WhiteningKeyMSB = ( WhiteningKeyLSB & 0x01 ) ^ ( ( WhiteningKeyLSB >> 5 ) & 0x01 );
WhiteningKeyLSB= ( ( WhiteningKeyLSB >> 1 ) & 0xFF ) | ( ( WhiteningKeyMSBPrevious << 7 ) & 0x80 );
}
}
}
/***********************************************************************
* Whitening generator reverse engineered from Sx1272 data stream.
* Each bit of a codeword is combined with the output from a different position in the whitening sequence.
**********************************************************************/
static void Sx1272ComputeWhitening(uint8_t *buffer, uint16_t bufferSize, const int bitOfs, const int RDD) {
static const int ofs0[8] = {6,4,2,0,-112,-114,-302,-34 }; // offset into sequence for each bit
static const int ofs1[5] = {6,4,2,0,-360 }; // different offsets used for single parity mode (1 == RDD)
static const int whiten_len = 510; // length of whitening sequence
static const uint64_t whiten_seq[8] = { // whitening sequence
0x0102291EA751AAFFL,0xD24B050A8D643A17L,0x5B279B671120B8F4L,0x032B37B9F6FB55A2L,
0x994E0F87E95E2D16L,0x7CBCFC7631984C26L,0x281C8E4F0DAEF7F9L,0x1741886EB7733B15L
};
const int *ofs = (1 == RDD) ? ofs1 : ofs0;
int i, j;
for (j = 0; j < bufferSize; j++) {
uint8_t x = 0;
for (i = 0; i < 4 + RDD; i++) {
int t = (ofs[i] + j + bitOfs + whiten_len) % whiten_len;
if (whiten_seq[t >> 6] & ((uint64_t)1 << (t & 0x3F))) {
x |= 1 << i;
}
}
buffer[j] ^= x;
}
}
/***********************************************************************
* Whitening generator reverse engineered from Sx1272 data stream.
* Same as above but using the actual interleaved LFSRs.
**********************************************************************/
static void Sx1272ComputeWhiteningLfsr(uint8_t *buffer, uint16_t bufferSize, const int bitOfs, const size_t RDD) {
static const uint64_t seed1[2] = {0x6572D100E85C2EFF,0xE85C2EFFFFFFFFFF}; // lfsr start values
static const uint64_t seed2[2] = {0x05121100F8ECFEEF,0xF8ECFEEFEFEFEFEF}; // lfsr start values for single parity mode (1 == RDD)
const uint8_t m = 0xff >> (4 - RDD);
uint64_t r[2] = {(1 == RDD)?seed2[0]:seed1[0],(1 == RDD)?seed2[1]:seed1[1]};
int i,j;
for (i = 0; i < bitOfs;i++){
r[i & 1] = (r[i & 1] >> 8) | (((r[i & 1] >> 32) ^ (r[i & 1] >> 24) ^ (r[i & 1] >> 16) ^ r[i & 1]) << 56); // poly: 0x1D
}
for (j = 0; j < bufferSize; j++,i++) {
buffer[j] ^= r[i & 1] & m;
r[i & 1] = (r[i & 1] >> 8) | (((r[i & 1] >> 32) ^ (r[i & 1] >> 24) ^ (r[i & 1] >> 16) ^ r[i & 1]) << 56);
}
}
/***********************************************************************
* https://en.wikipedia.org/wiki/Gray_code
**********************************************************************/
/*
* This function converts an unsigned binary
* number to reflected binary Gray code.
*
* The operator >> is shift right. The operator ^ is exclusive or.
*/
static unsigned short binaryToGray16(unsigned short num)
{
return num ^ (num >> 1);
}
/*
* A more efficient version, for Gray codes of 16 or fewer bits.
*/
static unsigned short grayToBinary16(unsigned short num)
{
num = num ^ (num >> 8);
num = num ^ (num >> 4);
num = num ^ (num >> 2);
num = num ^ (num >> 1);
return num;
}
/***********************************************************************
* Encode a 4 bit word into a 8 bits with parity
* Non standard version used in sx1272.
* https://en.wikipedia.org/wiki/Hamming_code
**********************************************************************/
static unsigned char encodeHamming84sx(const unsigned char x)
{
int d0 = (x >> 0) & 0x1;
int d1 = (x >> 1) & 0x1;
int d2 = (x >> 2) & 0x1;
int d3 = (x >> 3) & 0x1;
int b = x & 0xf;
b |= (d0 ^ d1 ^ d2) << 4;
b |= (d1 ^ d2 ^ d3) << 5;
b |= (d0 ^ d1 ^ d3) << 6;
b |= (d0 ^ d2 ^ d3) << 7;
return b;
}
/***********************************************************************
* Decode 8 bits into a 4 bit word with single bit correction.
* Non standard version used in sx1272.
* Set error to true when a parity error was detected
* Set bad to true when the result could not be corrected
**********************************************************************/
static unsigned char decodeHamming84sx(const unsigned char b, int * error, int * bad)
{
int b0 = (b >> 0) & 0x1;
int b1 = (b >> 1) & 0x1;
int b2 = (b >> 2) & 0x1;
int b3 = (b >> 3) & 0x1;
int b4 = (b >> 4) & 0x1;
int b5 = (b >> 5) & 0x1;
int b6 = (b >> 6) & 0x1;
int b7 = (b >> 7) & 0x1;
int p0 = (b0 ^ b1 ^ b2 ^ b4);
int p1 = (b1 ^ b2 ^ b3 ^ b5);
int p2 = (b0 ^ b1 ^ b3 ^ b6);
int p3 = (b0 ^ b2 ^ b3 ^ b7);
int parity = (p0 << 0) | (p1 << 1) | (p2 << 2) | (p3 << 3);
if (parity != 0) *error = 1;
switch (parity & 0xf)
{
case 0xD: return (b ^ 1) & 0xf;
case 0x7: return (b ^ 2) & 0xf;
case 0xB: return (b ^ 4) & 0xf;
case 0xE: return (b ^ 8) & 0xf;
case 0x0:
case 0x1:
case 0x2:
case 0x4:
case 0x8: return b & 0xf;
default: *bad = 1; return b & 0xf;
}
}
/***********************************************************************
* Encode a 4 bit word into a 7 bits with parity.
* Non standard version used in sx1272.
**********************************************************************/
static unsigned char encodeHamming74sx(const unsigned char x)
{
int d0 = (x >> 0) & 0x1;
int d1 = (x >> 1) & 0x1;
int d2 = (x >> 2) & 0x1;
int d3 = (x >> 3) & 0x1;
unsigned char b = x & 0xf;
b |= (d0 ^ d1 ^ d2) << 4;
b |= (d1 ^ d2 ^ d3) << 5;
b |= (d0 ^ d1 ^ d3) << 6;
return b;
}
/***********************************************************************
* Decode 7 bits into a 4 bit word with single bit correction.
* Non standard version used in sx1272.
* Set error to true when a parity error was detected
**********************************************************************/
static unsigned char decodeHamming74sx(const unsigned char b, int * error)
{
int b0 = (b >> 0) & 0x1;
int b1 = (b >> 1) & 0x1;
int b2 = (b >> 2) & 0x1;
int b3 = (b >> 3) & 0x1;
int b4 = (b >> 4) & 0x1;
int b5 = (b >> 5) & 0x1;
int b6 = (b >> 6) & 0x1;
int p0 = (b0 ^ b1 ^ b2 ^ b4);
int p1 = (b1 ^ b2 ^ b3 ^ b5);
int p2 = (b0 ^ b1 ^ b3 ^ b6);
int parity = (p0 << 0) | (p1 << 1) | (p2 << 2);
if (parity != 0) *error = 1;
switch (parity)
{
case 0x5: return (b ^ 1) & 0xf;
case 0x7: return (b ^ 2) & 0xf;
case 0x3: return (b ^ 4) & 0xf;
case 0x6: return (b ^ 8) & 0xf;
case 0x0:
case 0x1:
case 0x2:
case 0x4: return b & 0xF;
}
return b & 0xf;
}
/***********************************************************************
* Check parity for 5/4 code.
* return true if parity is valid.
**********************************************************************/
static unsigned char checkParity54(const unsigned char b, int *error) {
int x = b ^ (b >> 2);
x = x ^ (x >> 1) ^ (b >> 4);
if (x & 1) *error = 1;
return b & 0xf;
}
static unsigned char encodeParity54(const unsigned char b) {
int x = b ^ (b >> 2);
x = x ^ (x >> 1);
return (b & 0xf) | ((x << 4) & 0x10);
}
/***********************************************************************
* Check parity for 6/4 code.
* return true if parity is valid.
**********************************************************************/
static unsigned char checkParity64(const unsigned char b, int *error) {
int x = b ^ (b >> 1) ^ (b >> 2);
int y = x ^ b ^ (b >> 3);
x ^= b >> 4;
y ^= b >> 5;
if ((x | y) & 1) *error = 1;
return b & 0xf;
}
static unsigned char encodeParity64(const unsigned char b) {
int x = b ^ (b >> 1) ^ (b >> 2);
int y = x ^ b ^ (b >> 3);
return ((x & 1) << 4) | ((y & 1) << 5) | (b & 0xf);
}
/***********************************************************************
* Diagonal interleaver + deinterleaver
**********************************************************************/
static void diagonalInterleaveSx(const uint8_t *codewords, const size_t numCodewords, uint16_t *symbols, const size_t PPM, const size_t RDD){
for (size_t x = 0; x < numCodewords / PPM; x++) {
const size_t cwOff = x*PPM;
const size_t symOff = x*(4 + RDD);
for (size_t k = 0; k < 4 + RDD; k++){
uint16_t s = symbols[symOff + k];
for (size_t m = 0; m < PPM; m++){
const size_t i = (m + k + PPM) % PPM;
const int bit = (codewords[cwOff + i] >> k) & 0x1;
s |= (bit << m);
}
symbols[symOff + k] = s;
}
}
}
static void diagonalDeterleaveSx(const uint16_t *symbols, const size_t numSymbols, uint8_t *codewords, const size_t PPM, const size_t RDD)
{
for (size_t x = 0; x < numSymbols / (4 + RDD); x++)
{
const size_t cwOff = x*PPM;
const size_t symOff = x*(4 + RDD);
for (size_t k = 0; k < 4 + RDD; k++)
{
for (size_t m = 0; m < PPM; m++)
{
const size_t i = (m + k) % PPM;
const int bit = (symbols[symOff + k] >> m) & 0x1;
codewords[cwOff + i] |= (bit << k);
}
}
}
}
static void diagonalDeterleaveSx2(const uint16_t *symbols, const size_t numSymbols, uint8_t *codewords, const size_t PPM, const size_t RDD)
{
size_t nb = RDD + 4;
for (size_t x = 0; x < numSymbols / nb; x++) {
const size_t cwOff = x*PPM;
const size_t symOff = x*nb;
for (size_t m = 0; m < PPM; m++) {
size_t i = m;
int sym = symbols[symOff + m];
for (size_t k = 0; k < PPM; k++, sym >>= 1) {
codewords[cwOff + i] |= (sym & 1) << m;
if (++i == PPM) i = 0;
}
}
}
}
static void encodeFec(uint8_t * codewords, const size_t RDD, size_t * cOfs, size_t * dOfs, const uint8_t *bytes, const size_t count)
{
if (RDD == 0) for (size_t i = 0; i < count; i++, (*dOfs)++) {
if ((*dOfs) & 1)
codewords[(*cOfs)++] = bytes[(*dOfs) >> 1] >> 4;
else
codewords[(*cOfs)++] = bytes[(*dOfs) >> 1] & 0xf;
} else if (RDD == 1) for (size_t i = 0; i < count; i++, (*dOfs)++) {
if ((*dOfs) & 1)
codewords[(*cOfs)++] = encodeParity54(bytes[(*dOfs) >> 1] >> 4);
else
codewords[(*cOfs)++] = encodeParity54(bytes[(*dOfs) >> 1] & 0xf);
} else if (RDD == 2) for (size_t i = 0; i < count; i++, (*dOfs)++) {
if ((*dOfs) & 1)
codewords[(*cOfs)++] = encodeParity64(bytes[(*dOfs) >> 1] >> 4);
else
codewords[(*cOfs)++] = encodeParity64(bytes[(*dOfs) >> 1] & 0xf);
} else if (RDD == 3) for (size_t i = 0; i < count; i++, (*dOfs)++) {
if ((*dOfs) & 1)
codewords[(*cOfs)++] = encodeHamming74sx(bytes[(*dOfs) >> 1] >> 4);
else
codewords[(*cOfs)++] = encodeHamming74sx(bytes[(*dOfs) >> 1] & 0xf);
} else if (RDD == 4) for (size_t i = 0; i < count; i++, (*dOfs)++) {
if ((*dOfs) & 1)
codewords[(*cOfs)++] = encodeHamming84sx(bytes[(*dOfs) >> 1] >> 4);
else
codewords[(*cOfs)++] = encodeHamming84sx(bytes[(*dOfs) >> 1] & 0xf);
}
}
// This function has been HEAVILY modified from the original.
// Note that there are references to SF6, 11 and 12, but they do not currently work.
static int CreateMessageFromPayload( uint16_t * symbols, int * symbol_out_count, int max_symbols, int _sf, int _rdd, uint8_t * payload_plus_two_extra_crc_bytes, int payload_length )
{
//static int uctr = 0;
int _whitening = 1; // Enable whitening
int _crc = 1; // Enable CRC.
size_t PPM = _sf;
int _explicit = 1;
// TODO: https://dl.acm.org/doi/fullHtml/10.1145/3546869#sec-9 -- what about the corner cases for SF6, etc.
// SF6 does NOT WORK
int nHeaderCodewords = 0;
if( _sf == 6 ) nHeaderCodewords = 6;
if( _sf == 7 ) nHeaderCodewords = 5; // CORRECT VALIDATED
if( _sf == 8 ) nHeaderCodewords = 6; // CORRECT VALIDATED
if( _sf == 9 ) nHeaderCodewords = 7; // CORRECT VALIDATED
if( _sf == 10 ) nHeaderCodewords = 8; // CORRECT VALIDATED
if( _sf == 11 ) nHeaderCodewords = 9; // ???? Probably Wrong
if( _sf == 12 ) nHeaderCodewords = 10; // ???? Probably Wrong
int header_ppm_shift_up_by = 2;
// SF6 still isn't working.
// header does not reduce SF on SF <= 6 https://github.com/tapparelj/gr-lora_sdr/compare/master...feature/sf5_6_sx126x#diff-1821161335c7f28236eb88e3b8a3c84cce6997861cd847e87fbc9e270d338a37R68
// Indirectly, to note, for SF > 6, the header is implicitly LDRO (the bottom 2 bits are ignored)
if( _sf < 7 ) header_ppm_shift_up_by = 0;
int extra_codewords_due_to_header_padding = ( _sf == 7 || _sf == 6 /* CHECKME */ ) ? 1 : 0;
int header_ppm = ( _sf - header_ppm_shift_up_by );
int data_ppm = _sf;
// XXX TODO: Investigate: I thought SF12 had an LDRO mode which made the PPM only 10.
// TODO: Compare to https://github.com/jkadbear/LoRaPHY/blob/master/LoRaPHY.m
const size_t numCodewords = roundUp( ( payload_length + 2 * _crc ) * 2 + (_explicit ? nHeaderCodewords:0) + extra_codewords_due_to_header_padding, PPM);
const size_t numSymbols = N_HEADER_SYMBOLS + (numCodewords / PPM - 1) * (4 + _rdd); // header is always coded with 8/4
uint8_t codewords[numCodewords];
memset( codewords, 0, sizeof( codewords ) );
if( numSymbols >= max_symbols )
{
//uprintf( "Error: Too many symbols to fit (%d/%d)\n", numSymbols, max_symbols );
return -1;
}
memset( symbols, 0, numSymbols * sizeof( symbols[0] ) );
size_t cOfs = 0;
size_t dOfs = 0;
//std::vector<uint8_t> codewords(numCodewords);
if (_crc)
{
uint16_t crc = sx1272DataChecksum( payload_plus_two_extra_crc_bytes, payload_length );
payload_plus_two_extra_crc_bytes[payload_length] = crc & 0xff;
payload_plus_two_extra_crc_bytes[payload_length+1] = (crc >> 8) & 0xff;
}
// Why does this disagree? https://www.Carloalbertoboano.Com/Documents/Yang22emu.Pdf
if (_explicit) {
uint8_t hdr[3];
hdr[0] = payload_length;
hdr[1] = (_crc ? 1 : 0) | (_rdd << 1);
//static int k;
hdr[2] =
//k++;
headerChecksum(hdr);
codewords[cOfs++] = encodeHamming84sx(hdr[0] >> 4);
codewords[cOfs++] = encodeHamming84sx(hdr[0] & 0xf); // length
codewords[cOfs++] = encodeHamming84sx(hdr[1] & 0xf); // crc / fec info
codewords[cOfs++] = encodeHamming84sx(hdr[2] >> 4); // checksum
codewords[cOfs++] = encodeHamming84sx(hdr[2] & 0xf);
if( extra_codewords_due_to_header_padding > 1 )
{
codewords[cOfs++] = 0;
}
if( extra_codewords_due_to_header_padding > 2 )
{
codewords[cOfs++] = 0;
}
if( extra_codewords_due_to_header_padding > 3 )
{
codewords[cOfs++] = 0;
}
}
size_t cOfs1 = cOfs;
// Header is encoded at 8/4 (4)
encodeFec( codewords, 4, &cOfs, &dOfs, payload_plus_two_extra_crc_bytes, PPM - cOfs );
// Whitening for the data that lives inside the header block.
if( _whitening )
{
Sx1272ComputeWhitening(codewords + cOfs1, PPM - cOfs1, 0, HEADER_RDD);
}
if (numCodewords > PPM) {
size_t cOfs2 = cOfs;
encodeFec(codewords, _rdd, &cOfs, &dOfs, payload_plus_two_extra_crc_bytes, numCodewords-PPM);
if (_whitening) {
Sx1272ComputeWhitening(codewords + cOfs2, numCodewords - PPM, PPM - cOfs1, _rdd);
}
}
//interleave the codewords into symbols
int symbols_size = numSymbols;
// TRICKY: Header is forced to a particularly slow mode.
diagonalInterleaveSx(codewords, header_ppm, symbols, header_ppm, HEADER_RDD);
int i;
if (numCodewords > header_ppm) {
diagonalInterleaveSx(codewords + nHeaderCodewords, numCodewords-nHeaderCodewords, symbols+N_HEADER_SYMBOLS, data_ppm, _rdd);
}
//gray decode, when SF > PPM, pad out LSBs
uint16_t sym;
for( i = 0; i < symbols_size; i++ )
{
//int is_header = (i < 8);
sym = symbols[i];
sym = grayToBinary16(sym);
sym <<= (_sf - PPM);
symbols[i] = sym; // OR +1
}
// The first header symbols are all shifted by 2.
// XXX TODO Look here for SF6 stuff.
for( i = 0; i < N_HEADER_SYMBOLS; i++ )
{
symbols[i] <<= header_ppm_shift_up_by;
}
*symbol_out_count = symbols_size;
return 0;
}
#endif