-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathoptillm.py
754 lines (645 loc) · 30 KB
/
optillm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import argparse
import logging
import os
import secrets
from flask import Flask, request, jsonify
from openai import AzureOpenAI, OpenAI
from flask import Response
import json
import importlib
import glob
import asyncio
import re
from concurrent.futures import ThreadPoolExecutor
from typing import Tuple, Optional, Union, Dict, Any, List
from importlib.metadata import version
# Import approach modules
from optillm.mcts import chat_with_mcts
from optillm.bon import best_of_n_sampling
from optillm.moa import mixture_of_agents
from optillm.rto import round_trip_optimization
from optillm.self_consistency import advanced_self_consistency_approach
from optillm.pvg import inference_time_pv_game
from optillm.z3_solver import Z3SymPySolverSystem
from optillm.rstar import RStar
from optillm.cot_reflection import cot_reflection
from optillm.plansearch import plansearch
from optillm.leap import leap
from optillm.reread import re2_approach
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
logging_levels = {
"notset": logging.NOTSET,
"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING,
"error": logging.ERROR,
"critical": logging.CRITICAL,
}
# Initialize Flask app
app = Flask(__name__)
def get_config():
API_KEY = None
if os.environ.get("OPTILLM_API_KEY"):
# Use local inference engine
from optillm.inference import create_inference_client
API_KEY = os.environ.get("OPTILLM_API_KEY")
default_client = create_inference_client()
# OpenAI, Azure, or LiteLLM API configuration
elif os.environ.get("OPENAI_API_KEY"):
API_KEY = os.environ.get("OPENAI_API_KEY")
base_url = server_config['base_url']
if base_url != "":
default_client = OpenAI(api_key=API_KEY, base_url=base_url)
else:
default_client = OpenAI(api_key=API_KEY)
elif os.environ.get("AZURE_OPENAI_API_KEY"):
API_KEY = os.environ.get("AZURE_OPENAI_API_KEY")
API_VERSION = os.environ.get("AZURE_API_VERSION")
AZURE_ENDPOINT = os.environ.get("AZURE_API_BASE")
if API_KEY is not None:
default_client = AzureOpenAI(
api_key=API_KEY,
api_version=API_VERSION,
azure_endpoint=AZURE_ENDPOINT,
)
else:
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
azure_credential = DefaultAzureCredential()
token_provider = get_bearer_token_provider(azure_credential, "https://cognitiveservices.azure.com/.default")
default_client = AzureOpenAI(
api_version=API_VERSION,
azure_endpoint=AZURE_ENDPOINT,
azure_ad_token_provider=token_provider
)
else:
# Import the LiteLLM wrapper
from optillm.litellm_wrapper import LiteLLMWrapper
default_client = LiteLLMWrapper()
return default_client, API_KEY
# Server configuration
server_config = {
'approach': 'none',
'mcts_simulations': 2,
'mcts_exploration': 0.2,
'mcts_depth': 1,
'best_of_n': 3,
'model': 'gpt-4o-mini',
'rstar_max_depth': 3,
'rstar_num_rollouts': 5,
'rstar_c': 1.4,
'n': 1,
'base_url': '',
'optillm_api_key': '',
'return_full_response': False,
'port': 8000,
'log': 'info',
}
# List of known approaches
known_approaches = ["none", "mcts", "bon", "moa", "rto", "z3", "self_consistency",
"pvg", "rstar", "cot_reflection", "plansearch", "leap", "re2"]
plugin_approaches = {}
def none_approach(
client: Any,
model: str,
original_messages: List[Dict[str, str]],
**kwargs
) -> Dict[str, Any]:
"""
Direct proxy approach that passes through all parameters to the underlying endpoint.
Args:
system_prompt: System prompt text (unused)
initial_query: Initial query/conversation (unused)
client: OpenAI client instance
model: Model identifier
original_messages: Original messages from the request
**kwargs: Additional parameters to pass through
Returns:
Dict[str, Any]: Full OpenAI API response
"""
# Strip 'none-' prefix from model if present
if model.startswith('none-'):
model = model[5:]
try:
# Make the direct completion call with original messages and parameters
response = client.chat.completions.create(
model=model,
messages=original_messages,
**kwargs
)
# Convert to dict if it's not already
if hasattr(response, 'model_dump'):
return response.model_dump()
return response
except Exception as e:
logger.error(f"Error in none approach: {str(e)}")
raise
def load_plugins():
# Clear existing plugins first but modify the global dict in place
plugin_approaches.clear()
# Get installed package plugins directory
import optillm
package_plugin_dir = os.path.join(os.path.dirname(optillm.__file__), 'plugins')
# Get local project plugins directory
current_dir = os.getcwd() if server_config.get("plugins_dir", "") == "" else server_config["plugins_dir"]
local_plugin_dir = os.path.join(current_dir, 'optillm', 'plugins')
plugin_dirs = []
# Add package plugin dir
plugin_dirs.append((package_plugin_dir, "package"))
# Add local plugin dir only if it's different from package dir
if local_plugin_dir != package_plugin_dir:
plugin_dirs.append((local_plugin_dir, "local"))
for plugin_dir, source in plugin_dirs:
logger.info(f"Looking for {source} plugins in: {plugin_dir}")
if not os.path.exists(plugin_dir):
logger.debug(f"{source.capitalize()} plugin directory not found: {plugin_dir}")
continue
plugin_files = glob.glob(os.path.join(plugin_dir, '*.py'))
if not plugin_files:
logger.debug(f"No plugin files found in {source} directory: {plugin_dir}")
continue
logger.info(f"Found {source} plugin files: {plugin_files}")
for plugin_file in plugin_files:
try:
module_name = os.path.basename(plugin_file)[:-3] # Remove .py extension
spec = importlib.util.spec_from_file_location(module_name, plugin_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
if hasattr(module, 'SLUG') and hasattr(module, 'run'):
if module.SLUG in plugin_approaches:
logger.info(f"Overriding {source} plugin: {module.SLUG}")
plugin_approaches[module.SLUG] = module.run
logger.info(f"Loaded {source} plugin: {module.SLUG}")
else:
logger.warning(f"Plugin {module_name} from {source} missing required attributes (SLUG and run)")
except Exception as e:
logger.error(f"Error loading {source} plugin {plugin_file}: {str(e)}")
if not plugin_approaches:
logger.warning("No plugins loaded from any location")
def parse_combined_approach(model: str, known_approaches: list, plugin_approaches: dict):
if model == 'auto':
return 'SINGLE', ['none'], model
parts = model.split('-')
approaches = []
operation = 'SINGLE'
model_parts = []
parsing_approaches = True
for part in parts:
if parsing_approaches:
if part in known_approaches or part in plugin_approaches:
approaches.append(part)
elif '&' in part:
operation = 'AND'
approaches.extend(part.split('&'))
elif '|' in part:
operation = 'OR'
approaches.extend(part.split('|'))
else:
parsing_approaches = False
model_parts.append(part)
else:
model_parts.append(part)
if not approaches:
approaches = ['none']
operation = 'SINGLE'
actual_model = '-'.join(model_parts)
return operation, approaches, actual_model
def execute_single_approach(approach, system_prompt, initial_query, client, model):
if approach in known_approaches:
if approach == 'none':
# Extract kwargs from the request data
kwargs = {}
if hasattr(request, 'json'):
data = request.get_json()
messages = data.get('messages', [])
# Copy all parameters except 'stream', 'model' , 'n' and 'messages'
kwargs = {k: v for k, v in data.items()
if k not in ['model', 'messages', 'stream', 'n', 'optillm_approach']}
response = none_approach(original_messages=messages, client=client, model=model, **kwargs)
# For none approach, we return the response and a token count of 0
# since the full token count is already in the response
return response, 0
elif approach == 'mcts':
return chat_with_mcts(system_prompt, initial_query, client, model, server_config['mcts_simulations'],
server_config['mcts_exploration'], server_config['mcts_depth'])
elif approach == 'bon':
return best_of_n_sampling(system_prompt, initial_query, client, model, server_config['best_of_n'])
elif approach == 'moa':
return mixture_of_agents(system_prompt, initial_query, client, model)
elif approach == 'rto':
return round_trip_optimization(system_prompt, initial_query, client, model)
elif approach == 'z3':
z3_solver = Z3SymPySolverSystem(system_prompt, client, model)
return z3_solver.process_query(initial_query)
elif approach == "self_consistency":
return advanced_self_consistency_approach(system_prompt, initial_query, client, model)
elif approach == "pvg":
return inference_time_pv_game(system_prompt, initial_query, client, model)
elif approach == "rstar":
rstar = RStar(system_prompt, client, model,
max_depth=server_config['rstar_max_depth'], num_rollouts=server_config['rstar_num_rollouts'],
c=server_config['rstar_c'])
return rstar.solve(initial_query)
elif approach == "cot_reflection":
return cot_reflection(system_prompt, initial_query, client, model, return_full_response=server_config['return_full_response'])
elif approach == 'plansearch':
return plansearch(system_prompt, initial_query, client, model, n=server_config['n'])
elif approach == 'leap':
return leap(system_prompt, initial_query, client, model)
elif approach == 're2':
return re2_approach(system_prompt, initial_query, client, model, n=server_config['n'])
elif approach in plugin_approaches:
return plugin_approaches[approach](system_prompt, initial_query, client, model)
else:
raise ValueError(f"Unknown approach: {approach}")
def execute_combined_approaches(approaches, system_prompt, initial_query, client, model):
final_response = initial_query
total_tokens = 0
for approach in approaches:
response, tokens = execute_single_approach(approach, system_prompt, final_response, client, model)
final_response = response
total_tokens += tokens
return final_response, total_tokens
async def execute_parallel_approaches(approaches, system_prompt, initial_query, client, model):
async def run_approach(approach):
return await asyncio.to_thread(execute_single_approach, approach, system_prompt, initial_query, client, model)
tasks = [run_approach(approach) for approach in approaches]
results = await asyncio.gather(*tasks)
responses, tokens = zip(*results)
return list(responses), sum(tokens)
def execute_n_times(n: int, approaches, operation: str, system_prompt: str, initial_query: str, client: Any, model: str) -> Tuple[Union[str, List[str]], int]:
"""
Execute the pipeline n times and return n responses.
Args:
n (int): Number of times to run the pipeline
approaches (list): List of approaches to execute
operation (str): Operation type ('SINGLE', 'AND', or 'OR')
system_prompt (str): System prompt
initial_query (str): Initial query
client: OpenAI client instance
model (str): Model identifier
Returns:
Tuple[Union[str, List[str]], int]: List of responses and total token count
"""
responses = []
total_tokens = 0
for _ in range(n):
if operation == 'SINGLE':
response, tokens = execute_single_approach(approaches[0], system_prompt, initial_query, client, model)
elif operation == 'AND':
response, tokens = execute_combined_approaches(approaches, system_prompt, initial_query, client, model)
elif operation == 'OR':
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
response, tokens = loop.run_until_complete(execute_parallel_approaches(approaches, system_prompt, initial_query, client, model))
loop.close()
else:
raise ValueError(f"Unknown operation: {operation}")
# If response is already a list (from OR operation), extend responses
# Otherwise append the single response
if isinstance(response, list):
responses.extend(response)
else:
responses.append(response)
total_tokens += tokens
# If n=1 and we got a single response, return it as is
# Otherwise return the list of responses
if n == 1 and len(responses) == 1:
return responses[0], total_tokens
return responses, total_tokens
def generate_streaming_response(final_response, model):
# Yield the final response
if isinstance(final_response, list):
for index, response in enumerate(final_response):
yield "data: " + json.dumps({
"choices": [{"delta": {"content": response}, "index": index, "finish_reason": "stop"}],
"model": model,
}) + "\n\n"
else:
yield "data: " + json.dumps({
"choices": [{"delta": {"content": final_response}, "index": 0, "finish_reason": "stop"}],
"model": model,
}) + "\n\n"
# Yield the final message to indicate the stream has ended
yield "data: [DONE]\n\n"
def extract_contents(response_obj):
contents = []
# Handle both single response and list of responses
responses = response_obj if isinstance(response_obj, list) else [response_obj]
for response in responses:
# Extract content from first choice if it exists
if (response.get('choices') and
len(response['choices']) > 0 and
response['choices'][0].get('message') and
response['choices'][0]['message'].get('content')):
contents.append(response['choices'][0]['message']['content'])
return contents
def parse_conversation(messages):
system_prompt = ""
conversation = []
optillm_approach = None
for message in messages:
role = message['role']
content = message['content']
# Handle content that could be a list or string
if isinstance(content, list):
# Extract text content from the list
text_content = ' '.join(
item['text'] for item in content
if isinstance(item, dict) and item.get('type') == 'text'
)
else:
text_content = content
if role == 'system':
system_prompt, optillm_approach = extract_optillm_approach(text_content)
elif role == 'user':
if not optillm_approach:
text_content, optillm_approach = extract_optillm_approach(text_content)
conversation.append(f"User: {text_content}")
elif role == 'assistant':
conversation.append(f"Assistant: {text_content}")
initial_query = "\n".join(conversation)
return system_prompt, initial_query, optillm_approach
def tagged_conversation_to_messages(response_text):
"""Convert a tagged conversation string or list of strings into a list of messages.
If the input doesn't contain User:/Assistant: tags, return it as is.
Args:
response_text: Either a string containing "User:" and "Assistant:" tags,
or a list of such strings.
Returns:
If input has tags: A list of message dictionaries.
If input has no tags: The original input.
"""
def has_conversation_tags(text):
return "User:" in text or "Assistant:" in text
def process_single_response(text):
if not has_conversation_tags(text):
return text
messages = []
# Split on "User:" or "Assistant:" while keeping the delimiter
parts = re.split(r'(?=(User:|Assistant:))', text.strip())
# Remove empty strings
parts = [p for p in parts if p.strip()]
for part in parts:
part = part.strip()
if part.startswith('User:'):
messages.append({
'role': 'user',
'content': part[5:].strip()
})
elif part.startswith('Assistant:'):
messages.append({
'role': 'assistant',
'content': part[10:].strip()
})
return messages
if isinstance(response_text, list):
processed = [process_single_response(text) for text in response_text]
# If none of the responses had tags, return original list
if all(isinstance(p, str) for p in processed):
return response_text
return processed
else:
return process_single_response(response_text)
def extract_optillm_approach(content):
match = re.search(r'<optillm_approach>(.*?)</optillm_approach>', content)
if match:
approach = match.group(1)
content = re.sub(r'<optillm_approach>.*?</optillm_approach>', '', content).strip()
return content, approach
return content, None
# Optional API key configuration to secure the proxy
@app.before_request
def check_api_key():
if server_config['optillm_api_key']:
if request.path == "/health":
return
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Invalid Authorization header. Expected format: 'Authorization: Bearer YOUR_API_KEY'"}), 401
client_key = auth_header.split('Bearer ', 1)[1].strip()
if not secrets.compare_digest(client_key, server_config['optillm_api_key']):
return jsonify({"error": "Invalid API key"}), 401
@app.route('/v1/chat/completions', methods=['POST'])
def proxy():
logger.info('Received request to /v1/chat/completions')
data = request.get_json()
auth_header = request.headers.get("Authorization")
bearer_token = ""
if auth_header and auth_header.startswith("Bearer "):
bearer_token = auth_header.split("Bearer ")[1].strip()
logger.debug(f"Intercepted Bearer Token: {bearer_token}")
logger.debug(f'Request data: {data}')
stream = data.get('stream', False)
messages = data.get('messages', [])
model = data.get('model', server_config['model'])
n = data.get('n', server_config['n']) # Get n value from request or config
optillm_approach = data.get('optillm_approach', server_config['approach'])
logger.debug(data)
server_config['mcts_depth'] = data.get('mcts_depth', server_config['mcts_depth'])
server_config['mcts_exploration'] = data.get('mcts_exploration', server_config['mcts_exploration'])
server_config['mcts_simulations'] = data.get('mcts_simulations', server_config['mcts_simulations'])
system_prompt, initial_query, message_optillm_approach = parse_conversation(messages)
if message_optillm_approach:
optillm_approach = message_optillm_approach
if optillm_approach != "auto":
model = f"{optillm_approach}-{model}"
base_url = server_config['base_url']
default_client, api_key = get_config()
operation, approaches, model = parse_combined_approach(model, known_approaches, plugin_approaches)
logger.info(f'Using approach(es) {approaches}, operation {operation}, with model {model}')
if bearer_token != "" and bearer_token.startswith("sk-"):
api_key = bearer_token
if base_url != "":
client = OpenAI(api_key=api_key, base_url=base_url)
else:
client = OpenAI(api_key=api_key)
else:
client = default_client
try:
# Check if any of the approaches is 'none'
contains_none = any(approach == 'none' for approach in approaches)
if operation == 'SINGLE' and approaches[0] == 'none':
# For none approach with n>1, make n separate calls
if n > 1:
responses = []
completion_tokens = 0
for _ in range(n):
result, tokens = execute_single_approach(approaches[0], system_prompt, initial_query, client, model)
responses.append(result)
completion_tokens += tokens
result = responses
else:
result, completion_tokens = execute_single_approach(approaches[0], system_prompt, initial_query, client, model)
logger.debug(f'Direct proxy response: {result}')
if stream:
return Response(generate_streaming_response(extract_contents(result), model), content_type='text/event-stream')
else :
return jsonify(result), 200
elif operation == 'AND' or operation == 'OR':
if contains_none:
raise ValueError("'none' approach cannot be combined with other approaches")
# Handle non-none approaches with n attempts
response, completion_tokens = execute_n_times(n, approaches, operation, system_prompt, initial_query, client, model)
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
return jsonify({"error": str(e)}), 500
# Convert tagged conversation to messages format if needed
if isinstance(response, list):
processed_response = tagged_conversation_to_messages(response)
# If processed_response is a list of message lists, extract last message content
if processed_response != response: # Only process if format changed
response = [msg[-1]['content'] if isinstance(msg, list) and msg else msg
for msg in processed_response]
# Otherwise keep original response
else:
messages = tagged_conversation_to_messages(response)
if isinstance(messages, list) and messages: # Only process if format changed
response = messages[-1]['content']
if stream:
return Response(generate_streaming_response(response, model), content_type='text/event-stream')
else:
response_data = {
'model': model,
'choices': [],
'usage': {
'completion_tokens': completion_tokens,
}
}
if isinstance(response, list):
for index, resp in enumerate(response):
response_data['choices'].append({
'index': index,
'message': {
'role': 'assistant',
'content': resp,
},
'finish_reason': 'stop'
})
else:
response_data['choices'].append({
'index': 0,
'message': {
'role': 'assistant',
'content': response,
},
'finish_reason': 'stop'
})
logger.debug(f'API response: {response_data}')
return jsonify(response_data), 200
@app.route('/v1/models', methods=['GET'])
def proxy_models():
logger.info('Received request to /v1/models')
default_client, API_KEY = get_config()
try:
if server_config['base_url']:
client = OpenAI(api_key=API_KEY, base_url=server_config['base_url'])
else:
client = default_client
# Fetch models using the OpenAI client and return the raw response
models_response = client.models.list()
logger.debug('Models retrieved successfully')
return models_response.model_dump(), 200
except Exception as e:
logger.error(f"Error fetching models: {str(e)}")
return jsonify({"error": f"Error fetching models: {str(e)}"}), 500
@app.route('/health', methods=['GET'])
def health():
return jsonify({"status": "ok"}), 200
def parse_args():
parser = argparse.ArgumentParser(description="Run LLM inference with various approaches.")
try:
from optillm import __version__ as package_version
except ImportError:
package_version = "unknown"
parser.add_argument('--version', action='version',
version=f'%(prog)s {package_version}',
help="Show program's version number and exit")
# Define arguments and their corresponding environment variables
args_env = [
("--optillm-api-key", "OPTILLM_API_KEY", str, "", "Optional API key for client authentication to optillm"),
("--approach", "OPTILLM_APPROACH", str, "auto", "Inference approach to use", known_approaches + list(plugin_approaches.keys())),
("--mcts-simulations", "OPTILLM_SIMULATIONS", int, 2, "Number of MCTS simulations"),
("--mcts-exploration", "OPTILLM_EXPLORATION", float, 0.2, "Exploration weight for MCTS"),
("--mcts-depth", "OPTILLM_DEPTH", int, 1, "Simulation depth for MCTS"),
("--model", "OPTILLM_MODEL", str, "gpt-4o-mini", "OpenAI model to use"),
("--rstar-max-depth", "OPTILLM_RSTAR_MAX_DEPTH", int, 3, "Maximum depth for rStar algorithm"),
("--rstar-num-rollouts", "OPTILLM_RSTAR_NUM_ROLLOUTS", int, 5, "Number of rollouts for rStar algorithm"),
("--rstar-c", "OPTILLM_RSTAR_C", float, 1.4, "Exploration constant for rStar algorithm"),
("--n", "OPTILLM_N", int, 1, "Number of final responses to be returned"),
("--return-full-response", "OPTILLM_RETURN_FULL_RESPONSE", bool, False, "Return the full response including the CoT with <thinking> tags"),
("--port", "OPTILLM_PORT", int, 8000, "Specify the port to run the proxy"),
("--log", "OPTILLM_LOG", str, "info", "Specify the logging level", list(logging_levels.keys())),
("--launch-gui", "OPTILLM_LAUNCH_GUI", bool, False, "Launch a Gradio chat interface"),
("--plugins-dir", "OPTILLM_PLUGINS_DIR", str, "", "Path to the plugins directory"),
]
for arg, env, type_, default, help_text, *extra in args_env:
env_value = os.environ.get(env)
if env_value is not None:
if type_ == bool:
default = env_value.lower() in ('true', '1', 'yes')
else:
default = type_(env_value)
if extra and extra[0]: # Check if there are choices for this argument
parser.add_argument(arg, type=type_, default=default, help=help_text, choices=extra[0])
else:
parser.add_argument(arg, type=type_, default=default, help=help_text)
# Special handling for best_of_n to support both formats
best_of_n_default = int(os.environ.get("OPTILLM_BEST_OF_N", 3))
parser.add_argument("--best-of-n", "--best_of_n", dest="best_of_n", type=int, default=best_of_n_default,
help="Number of samples for best_of_n approach")
# Special handling for base_url to support both formats
base_url_default = os.environ.get("OPTILLM_BASE_URL", "")
parser.add_argument("--base-url", "--base_url", dest="base_url", type=str, default=base_url_default,
help="Base url for OpenAI compatible endpoint")
args = parser.parse_args()
# Convert argument names to match server_config keys
args_dict = vars(args)
for key in list(args_dict.keys()):
new_key = key.replace("-", "_")
if new_key != key:
args_dict[new_key] = args_dict.pop(key)
return args
def main():
global server_config
# Call this function at the start of main()
args = parse_args()
# Update server_config with all argument values
server_config.update(vars(args))
load_plugins()
port = server_config['port']
# Set logging level from user request
logging_level = server_config['log']
if logging_level in logging_levels.keys():
logger.setLevel(logging_levels[logging_level])
logger.info(f"Starting server with approach: {server_config['approach']}")
server_config_clean = server_config.copy()
if server_config_clean['optillm_api_key']:
server_config_clean['optillm_api_key'] = '[REDACTED]'
logger.info(f"Server configuration: {server_config_clean}")
# Launch GUI if requested
if server_config.get('launch_gui'):
try:
import gradio as gr
# Start server in a separate thread
import threading
server_thread = threading.Thread(target=app.run, kwargs={'host': '0.0.0.0', 'port': port})
server_thread.daemon = True
server_thread.start()
# Configure the base URL for the Gradio interface
base_url = f"http://localhost:{port}/v1"
logger.info(f"Launching Gradio interface connected to {base_url}")
# Launch Gradio interface
demo = gr.load_chat(
base_url,
model=server_config['model'],
token=None
)
demo.launch(server_name="0.0.0.0", share=False)
except ImportError:
logger.error("Gradio is required for GUI. Install it with: pip install gradio")
return
app.run(host='0.0.0.0', port=port)
if __name__ == "__main__":
main()