forked from adeshpande3/Facebook-Messenger-Bot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeq2Seq.py
250 lines (220 loc) · 9.49 KB
/
Seq2Seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import tensorflow as tf
import numpy as np
import sys
from random import randint
import datetime
from sklearn.utils import shuffle
import pickle
import os
# Removes an annoying Tensorflow warning
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def createTrainingMatrices(conversationFileName, wList, maxLen):
conversationDictionary = np.load(conversationFileName).item()
numExamples = len(conversationDictionary)
xTrain = np.zeros((numExamples, maxLen), dtype='int32')
yTrain = np.zeros((numExamples, maxLen), dtype='int32')
for index,(key,value) in enumerate(conversationDictionary.iteritems()):
# Will store integerized representation of strings here (initialized as padding)
encoderMessage = np.full((maxLen), wList.index('<pad>'), dtype='int32')
decoderMessage = np.full((maxLen), wList.index('<pad>'), dtype='int32')
# Getting all the individual words in the strings
keySplit = key.split()
valueSplit = value.split()
keyCount = len(keySplit)
valueCount = len(valueSplit)
# Throw out sequences that are too long or are empty
if (keyCount > (maxLen - 1) or valueCount > (maxLen - 1) or valueCount == 0 or keyCount == 0):
continue
# Integerize the encoder string
for keyIndex, word in enumerate(keySplit):
try:
encoderMessage[keyIndex] = wList.index(word)
except ValueError:
# TODO: This isnt really the right way to handle this scenario
encoderMessage[keyIndex] = 0
encoderMessage[keyIndex + 1] = wList.index('<EOS>')
# Integerize the decoder string
for valueIndex, word in enumerate(valueSplit):
try:
decoderMessage[valueIndex] = wList.index(word)
except ValueError:
decoderMessage[valueIndex] = 0
decoderMessage[valueIndex + 1] = wList.index('<EOS>')
xTrain[index] = encoderMessage
yTrain[index] = decoderMessage
# Remove rows with all zeros
yTrain = yTrain[~np.all(yTrain == 0, axis=1)]
xTrain = xTrain[~np.all(xTrain == 0, axis=1)]
numExamples = xTrain.shape[0]
return numExamples, xTrain, yTrain
def getTrainingBatch(localXTrain, localYTrain, localBatchSize, maxLen):
num = randint(0,numTrainingExamples - localBatchSize - 1)
arr = localXTrain[num:num + localBatchSize]
labels = localYTrain[num:num + localBatchSize]
# Reversing the order of encoder string apparently helps as per 2014 paper
reversedList = list(arr)
for index,example in enumerate(reversedList):
reversedList[index] = list(reversed(example))
# Lagged labels are for the training input into the decoder
laggedLabels = []
EOStokenIndex = wordList.index('<EOS>')
padTokenIndex = wordList.index('<pad>')
for example in labels:
eosFound = np.argwhere(example==EOStokenIndex)[0]
shiftedExample = np.roll(example,1)
shiftedExample[0] = EOStokenIndex
# The EOS token was already at the end, so no need for pad
if (eosFound != (maxLen - 1)):
shiftedExample[eosFound+1] = padTokenIndex
laggedLabels.append(shiftedExample)
# Need to transpose these
reversedList = np.asarray(reversedList).T.tolist()
labels = labels.T.tolist()
laggedLabels = np.asarray(laggedLabels).T.tolist()
return reversedList, labels, laggedLabels
def translateToSentences(inputs, wList, encoder=False):
EOStokenIndex = wList.index('<EOS>')
padTokenIndex = wList.index('<pad>')
numStrings = len(inputs[0])
numLengthOfStrings = len(inputs)
listOfStrings = [''] * numStrings
for mySet in inputs:
for index,num in enumerate(mySet):
if (num != EOStokenIndex and num != padTokenIndex):
if (encoder):
# Encodings are in reverse!
listOfStrings[index] = wList[num] + " " + listOfStrings[index]
else:
listOfStrings[index] = listOfStrings[index] + " " + wList[num]
listOfStrings = [string.strip() for string in listOfStrings]
return listOfStrings
def getTestInput(inputMessage, wList, maxLen):
encoderMessage = np.full((maxLen), wList.index('<pad>'), dtype='int32')
inputSplit = inputMessage.lower().split()
for index,word in enumerate(inputSplit):
try:
encoderMessage[index] = wList.index(word)
except ValueError:
continue
encoderMessage[index + 1] = wList.index('<EOS>')
encoderMessage = encoderMessage[::-1]
encoderMessageList=[]
for num in encoderMessage:
encoderMessageList.append([num])
return encoderMessageList
def idsToSentence(ids, wList):
EOStokenIndex = wList.index('<EOS>')
padTokenIndex = wList.index('<pad>')
myStr = ""
listOfResponses=[]
for num in ids:
if (num[0] == EOStokenIndex or num[0] == padTokenIndex):
listOfResponses.append(myStr)
myStr = ""
else:
myStr = myStr + wList[num[0]] + " "
if myStr:
listOfResponses.append(myStr)
listOfResponses = [i for i in listOfResponses if i]
return listOfResponses
# Hyperparamters
batchSize = 24
maxEncoderLength = 15
maxDecoderLength = maxEncoderLength
lstmUnits = 112
embeddingDim = lstmUnits
numLayersLSTM = 3
numIterations = 500000
# Loading in all the data structures
with open("wordList.txt", "rb") as fp:
wordList = pickle.load(fp)
vocabSize = len(wordList)
# If you've run the entirety of word2vec.py then these lines will load in
# the embedding matrix.
if (os.path.isfile('embeddingMatrix.npy')):
wordVectors = np.load('embeddingMatrix.npy')
wordVecDimensions = wordVectors.shape[1]
else:
question = 'Since we cant find an embedding matrix, how many dimensions do you want your word vectors to be?: '
wordVecDimensions = int(input(question))
# Add two entries to the word vector matrix. One to represent padding tokens,
# and one to represent an end of sentence token
padVector = np.zeros((1, wordVecDimensions), dtype='int32')
EOSVector = np.ones((1, wordVecDimensions), dtype='int32')
if (os.path.isfile('embeddingMatrix.npy')):
wordVectors = np.concatenate((wordVectors,padVector), axis=0)
wordVectors = np.concatenate((wordVectors,EOSVector), axis=0)
# Need to modify the word list as well
wordList.append('<pad>')
wordList.append('<EOS>')
vocabSize = vocabSize + 2
if (os.path.isfile('Seq2SeqXTrain.npy') and os.path.isfile('Seq2SeqYTrain.npy')):
xTrain = np.load('Seq2SeqXTrain.npy')
yTrain = np.load('Seq2SeqYTrain.npy')
print 'Finished loading training matrices'
numTrainingExamples = xTrain.shape[0]
else:
numTrainingExamples, xTrain, yTrain = createTrainingMatrices('conversationDictionary.npy', wordList, maxEncoderLength)
np.save('Seq2SeqXTrain.npy', xTrain)
np.save('Seq2SeqYTrain.npy', yTrain)
print 'Finished creating training matrices'
tf.reset_default_graph()
# Create the placeholders
encoderInputs = [tf.placeholder(tf.int32, shape=(None,)) for i in range(maxEncoderLength)]
decoderLabels = [tf.placeholder(tf.int32, shape=(None,)) for i in range(maxDecoderLength)]
decoderInputs = [tf.placeholder(tf.int32, shape=(None,)) for i in range(maxDecoderLength)]
feedPrevious = tf.placeholder(tf.bool)
encoderLSTM = tf.nn.rnn_cell.BasicLSTMCell(lstmUnits, state_is_tuple=True)
#encoderLSTM = tf.nn.rnn_cell.MultiRNNCell([singleCell]*numLayersLSTM, state_is_tuple=True)
# Architectural choice of of whether or not to include ^
decoderOutputs, decoderFinalState = tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(encoderInputs, decoderInputs, encoderLSTM,
vocabSize, vocabSize, embeddingDim, feed_previous=feedPrevious)
decoderPrediction = tf.argmax(decoderOutputs, 2)
lossWeights = [tf.ones_like(l, dtype=tf.float32) for l in decoderLabels]
loss = tf.contrib.legacy_seq2seq.sequence_loss(decoderOutputs, decoderLabels, lossWeights, vocabSize)
optimizer = tf.train.AdamOptimizer(1e-4).minimize(loss)
sess = tf.Session()
saver = tf.train.Saver()
# If you're loading in a saved model, use the following
#saver.restore(sess, tf.train.latest_checkpoint('models/'))
sess.run(tf.global_variables_initializer())
# Uploading results to Tensorboard
tf.summary.scalar('Loss', loss)
merged = tf.summary.merge_all()
logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/"
writer = tf.summary.FileWriter(logdir, sess.graph)
# Some test strings that we'll use as input at intervals during training
encoderTestStrings = [
"how's it going?",
"let's grab dinner.",
"did zoey finish her homework?",
"when are you coming home?",
"what is dark matter?",
"how is your day going?",
"i'm so tired",
"can you pick up the kids?",
]
zeroVector = np.zeros((1), dtype='int32')
for i in range(numIterations):
encoderTrain, decoderTargetTrain, decoderInputTrain = getTrainingBatch(xTrain, yTrain, batchSize, maxEncoderLength)
feedDict = {encoderInputs[t]: encoderTrain[t] for t in range(maxEncoderLength)}
feedDict.update({decoderLabels[t]: decoderTargetTrain[t] for t in range(maxDecoderLength)})
feedDict.update({decoderInputs[t]: decoderInputTrain[t] for t in range(maxDecoderLength)})
feedDict.update({feedPrevious: False})
curLoss, _, pred = sess.run([loss, optimizer, decoderPrediction], feed_dict=feedDict)
if (i % 50 == 0):
print('Current loss:', curLoss, 'at iteration', i)
summary = sess.run(merged, feed_dict=feedDict)
writer.add_summary(summary, i)
if (i % 25 == 0 and i != 0):
num = randint(0,len(encoderTestStrings) - 1)
print encoderTestStrings[num]
inputVector = getTestInput(encoderTestStrings[num], wordList, maxEncoderLength);
feedDict = {encoderInputs[t]: inputVector[t] for t in range(maxEncoderLength)}
feedDict.update({decoderLabels[t]: zeroVector for t in range(maxDecoderLength)})
feedDict.update({decoderInputs[t]: zeroVector for t in range(maxDecoderLength)})
feedDict.update({feedPrevious: True})
ids = (sess.run(decoderPrediction, feed_dict=feedDict))
print idsToSentence(ids, wordList)
if (i % 10000 == 0 and i != 0):
savePath = saver.save(sess, "models/pretrained_seq2seq.ckpt", global_step=i)