-
-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathstore.go
302 lines (233 loc) · 8.04 KB
/
store.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
package graph
import (
"fmt"
"sync"
)
// Store represents a storage for vertices and edges. The graph library provides an in-memory store
// by default and accepts any Store implementation to work with - for example, an SQL store.
//
// When implementing your own Store, make sure the individual methods and their behavior adhere to
// this documentation. Otherwise, the graphs aren't guaranteed to behave as expected.
type Store[K comparable, T any] interface {
// AddVertex should add the given vertex with the given hash value and vertex properties to the
// graph. If the vertex already exists, it is up to you whether ErrVertexAlreadyExists or no
// error should be returned.
AddVertex(hash K, value T, properties VertexProperties) error
// Vertex should return the vertex and vertex properties with the given hash value. If the
// vertex doesn't exist, ErrVertexNotFound should be returned.
Vertex(hash K) (T, VertexProperties, error)
// RemoveVertex should remove the vertex with the given hash value. If the vertex doesn't
// exist, ErrVertexNotFound should be returned. If the vertex has edges to other vertices,
// ErrVertexHasEdges should be returned.
RemoveVertex(hash K) error
// ListVertices should return all vertices in the graph in a slice.
ListVertices() ([]K, error)
// VertexCount should return the number of vertices in the graph. This should be equal to the
// length of the slice returned by ListVertices.
VertexCount() (int, error)
// AddEdge should add an edge between the vertices with the given source and target hashes.
//
// If either vertex doesn't exit, ErrVertexNotFound should be returned for the respective
// vertex. If the edge already exists, ErrEdgeAlreadyExists should be returned.
AddEdge(sourceHash, targetHash K, edge Edge[K]) error
// UpdateEdge should update the edge between the given vertices with the data of the given
// Edge instance. If the edge doesn't exist, ErrEdgeNotFound should be returned.
UpdateEdge(sourceHash, targetHash K, edge Edge[K]) error
// RemoveEdge should remove the edge between the vertices with the given source and target
// hashes.
//
// If either vertex doesn't exist, it is up to you whether ErrVertexNotFound or no error should
// be returned. If the edge doesn't exist, it is up to you whether ErrEdgeNotFound or no error
// should be returned.
RemoveEdge(sourceHash, targetHash K) error
// Edge should return the edge joining the vertices with the given hash values. It should
// exclusively look for an edge between the source and the target vertex, not vice versa. The
// graph implementation does this for undirected graphs itself.
//
// Note that unlike Graph.Edge, this function is supposed to return an Edge[K], i.e. an edge
// that only contains the vertex hashes instead of the vertices themselves.
//
// If the edge doesn't exist, ErrEdgeNotFound should be returned.
Edge(sourceHash, targetHash K) (Edge[K], error)
// ListEdges should return all edges in the graph in a slice.
ListEdges() ([]Edge[K], error)
// EdgeCount should return the number of edges in the graph. This should be equal to the
// length of the slice returned by ListEdges.
EdgeCount() (int, error)
}
type memoryStore[K comparable, T any] struct {
lock sync.RWMutex
vertices map[K]T
vertexProperties map[K]VertexProperties
// outEdges and inEdges store all outgoing and ingoing edges for all vertices. For O(1) access,
// these edges themselves are stored in maps whose keys are the hashes of the target vertices.
outEdges map[K]map[K]Edge[K] // source -> target
inEdges map[K]map[K]Edge[K] // target -> source
edgeCount int
}
func newMemoryStore[K comparable, T any]() Store[K, T] {
return &memoryStore[K, T]{
vertices: make(map[K]T),
vertexProperties: make(map[K]VertexProperties),
outEdges: make(map[K]map[K]Edge[K]),
inEdges: make(map[K]map[K]Edge[K]),
}
}
func (s *memoryStore[K, T]) AddVertex(k K, t T, p VertexProperties) error {
s.lock.Lock()
defer s.lock.Unlock()
if _, ok := s.vertices[k]; ok {
return ErrVertexAlreadyExists
}
s.vertices[k] = t
s.vertexProperties[k] = p
return nil
}
func (s *memoryStore[K, T]) ListVertices() ([]K, error) {
s.lock.RLock()
defer s.lock.RUnlock()
hashes := make([]K, 0, len(s.vertices))
for k := range s.vertices {
hashes = append(hashes, k)
}
return hashes, nil
}
func (s *memoryStore[K, T]) VertexCount() (int, error) {
s.lock.RLock()
defer s.lock.RUnlock()
return len(s.vertices), nil
}
func (s *memoryStore[K, T]) Vertex(k K) (T, VertexProperties, error) {
s.lock.RLock()
defer s.lock.RUnlock()
v, ok := s.vertices[k]
if !ok {
return v, VertexProperties{}, ErrVertexNotFound
}
p := s.vertexProperties[k]
return v, p, nil
}
func (s *memoryStore[K, T]) RemoveVertex(k K) error {
s.lock.RLock()
defer s.lock.RUnlock()
if _, ok := s.vertices[k]; !ok {
return ErrVertexNotFound
}
if edges, ok := s.inEdges[k]; ok {
if len(edges) > 0 {
return ErrVertexHasEdges
}
delete(s.inEdges, k)
}
if edges, ok := s.outEdges[k]; ok {
if len(edges) > 0 {
return ErrVertexHasEdges
}
delete(s.outEdges, k)
}
delete(s.vertices, k)
delete(s.vertexProperties, k)
return nil
}
func (s *memoryStore[K, T]) AddEdge(sourceHash, targetHash K, edge Edge[K]) error {
s.lock.Lock()
defer s.lock.Unlock()
if _, ok := s.outEdges[sourceHash]; !ok {
s.outEdges[sourceHash] = make(map[K]Edge[K])
}
s.outEdges[sourceHash][targetHash] = edge
if _, ok := s.inEdges[targetHash]; !ok {
s.inEdges[targetHash] = make(map[K]Edge[K])
}
s.inEdges[targetHash][sourceHash] = edge
s.edgeCount++
return nil
}
func (s *memoryStore[K, T]) UpdateEdge(sourceHash, targetHash K, edge Edge[K]) error {
s.lock.Lock()
defer s.lock.Unlock()
targetEdges, ok := s.outEdges[sourceHash]
if !ok {
return ErrEdgeNotFound
}
_, ok = targetEdges[targetHash]
if !ok {
return ErrEdgeNotFound
}
s.outEdges[sourceHash][targetHash] = edge
s.inEdges[targetHash][sourceHash] = edge
return nil
}
func (s *memoryStore[K, T]) RemoveEdge(sourceHash, targetHash K) error {
s.lock.Lock()
defer s.lock.Unlock()
delete(s.inEdges[targetHash], sourceHash)
delete(s.outEdges[sourceHash], targetHash)
s.edgeCount--
return nil
}
func (s *memoryStore[K, T]) Edge(sourceHash, targetHash K) (Edge[K], error) {
s.lock.RLock()
defer s.lock.RUnlock()
sourceEdges, ok := s.outEdges[sourceHash]
if !ok {
return Edge[K]{}, ErrEdgeNotFound
}
edge, ok := sourceEdges[targetHash]
if !ok {
return Edge[K]{}, ErrEdgeNotFound
}
return edge, nil
}
func (s *memoryStore[K, T]) EdgeCount() (int, error) {
s.lock.RLock()
defer s.lock.RUnlock()
return s.edgeCount, nil
}
func (s *memoryStore[K, T]) ListEdges() ([]Edge[K], error) {
s.lock.RLock()
defer s.lock.RUnlock()
res := make([]Edge[K], 0, s.edgeCount)
for _, edges := range s.outEdges {
for _, edge := range edges {
res = append(res, edge)
}
}
return res, nil
}
// CreatesCycle is a fastpath version of [CreatesCycle] that avoids calling
// [PredecessorMap], which generates large amounts of garbage to collect.
//
// Because CreatesCycle doesn't need to modify the PredecessorMap, we can use
// inEdges instead to compute the same thing without creating any copies.
func (s *memoryStore[K, T]) CreatesCycle(source, target K) (bool, error) {
s.lock.RLock()
defer s.lock.RUnlock()
if _, ok := s.vertices[source]; !ok {
return false, fmt.Errorf("could not get vertex with hash %v", source)
}
if _, ok := s.vertices[target]; !ok {
return false, fmt.Errorf("could not get vertex with hash %v", target)
}
if source == target {
return true, nil
}
stack := newStack[K]()
visited := make(map[K]struct{})
stack.push(source)
for !stack.isEmpty() {
currentHash, _ := stack.pop()
if _, ok := visited[currentHash]; !ok {
// If the adjacent vertex also is the target vertex, the target is a
// parent of the source vertex. An edge would introduce a cycle.
if currentHash == target {
return true, nil
}
visited[currentHash] = struct{}{}
for adjacency := range s.inEdges[currentHash] {
stack.push(adjacency)
}
}
}
return false, nil
}