forked from Xilinx/mlir-aie
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.cpp
279 lines (235 loc) · 9.5 KB
/
test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//===- test.cpp -------------------------------------------000---*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
// Copyright (C) 2023, Advanced Micro Devices, Inc.
//
//===----------------------------------------------------------------------===//
#include <bits/stdc++.h>
#include <boost/program_options.hpp>
#include <cstdint>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "xrt/xrt_bo.h"
#include "xrt/xrt_device.h"
#include "xrt/xrt_kernel.h"
#include "test_utils.h"
#ifndef DATATYPES_USING_DEFINED
#define DATATYPES_USING_DEFINED
using INOUT0_DATATYPE = std::bfloat16_t;
using INOUT1_DATATYPE = std::bfloat16_t;
#endif
namespace po = boost::program_options;
// ----------------------------------------------------------------------------
// Verify results (specific to our design example)
// ----------------------------------------------------------------------------
template <typename T>
int verify(int CSize, std::vector<T> A, std::vector<T> C, int verbosity) {
int errors = 0;
for (uint32_t i = 0; i < CSize; i++) {
std::bfloat16_t ref = exp(A[i]);
// Let's check if they are inf or nan, and if so just pass because
// comparisions will then fail, even for matches
if (isinf(ref) || isinf(C[i]))
break;
if (isnan(ref) || isnan(C[i]))
break;
if (!test_utils::nearly_equal(ref, C[i], 0.0078125)) {
std::cout << "Error in output " << C[i] << " != " << ref << std::endl;
errors++;
} else {
if (verbosity > 1)
std::cout << "Correct output " << C[i] << " == " << ref << std::endl;
}
}
return errors;
}
// ----------------------------------------------------------------------------
// Main
// ----------------------------------------------------------------------------
int main(int argc, const char *argv[]) {
// ------------------------------------------------------
// Parse program arguments
// ------------------------------------------------------
po::options_description desc("Allowed options");
po::variables_map vm;
test_utils::add_default_options(desc);
test_utils::parse_options(argc, argv, desc, vm);
int verbosity = vm["verbosity"].as<int>();
int do_verify = vm["verify"].as<bool>();
int n_iterations = vm["iters"].as<int>();
int n_warmup_iterations = vm["warmup"].as<int>();
int trace_size = vm["trace_sz"].as<int>();
int INOUT0_VOLUME = 65536; // Input only, 65536x bfloat16_t
int INOUT1_VOLUME = 65536; // Input only, 65536x bfloat16_t
size_t INOUT0_SIZE = INOUT0_VOLUME * sizeof(INOUT0_DATATYPE);
size_t INOUT1_SIZE = INOUT1_VOLUME * sizeof(INOUT1_DATATYPE);
// TODO Remove trace for now?
size_t OUT_SIZE = INOUT1_SIZE + trace_size;
srand(time(NULL));
// Load instruction sequence
std::vector<uint32_t> instr_v =
test_utils::load_instr_sequence(vm["instr"].as<std::string>());
if (verbosity >= 1)
std::cout << "Sequence instr count: " << instr_v.size() << "\n";
// ------------------------------------------------------
// Get device, load the xclbin & kernel and register them
// ------------------------------------------------------
// Get a device handle
unsigned int device_index = 0;
auto device = xrt::device(device_index);
// Load the xclbin
if (verbosity >= 1)
std::cout << "Loading xclbin: " << vm["xclbin"].as<std::string>() << "\n";
auto xclbin = xrt::xclbin(vm["xclbin"].as<std::string>());
// Load the kernel
if (verbosity >= 1)
std::cout << "Kernel opcode: " << vm["kernel"].as<std::string>() << "\n";
std::string Node = vm["kernel"].as<std::string>();
// Get the kernel from the xclbin
auto xkernels = xclbin.get_kernels();
auto xkernel = *std::find_if(xkernels.begin(), xkernels.end(),
[Node, verbosity](xrt::xclbin::kernel &k) {
auto name = k.get_name();
if (verbosity >= 1) {
std::cout << "Name: " << name << std::endl;
}
return name.rfind(Node, 0) == 0;
});
auto kernelName = xkernel.get_name();
// Register xclbin
if (verbosity >= 1)
std::cout << "Registering xclbin: " << vm["xclbin"].as<std::string>()
<< "\n";
device.register_xclbin(xclbin);
// Get a hardware context
if (verbosity >= 1)
std::cout << "Getting hardware context.\n";
xrt::hw_context context(device, xclbin.get_uuid());
// Get a kernel handle
if (verbosity >= 1)
std::cout << "Getting handle to kernel:" << kernelName << "\n";
auto kernel = xrt::kernel(context, kernelName);
// ------------------------------------------------------
// Initialize input/ output buffer sizes and sync them
// ------------------------------------------------------
auto bo_instr = xrt::bo(device, instr_v.size() * sizeof(int),
XCL_BO_FLAGS_CACHEABLE, kernel.group_id(1));
auto bo_inout0 =
xrt::bo(device, INOUT0_SIZE, XRT_BO_FLAGS_HOST_ONLY, kernel.group_id(3));
auto bo_inout1 =
xrt::bo(device, OUT_SIZE, XRT_BO_FLAGS_HOST_ONLY, kernel.group_id(4));
if (verbosity >= 1)
std::cout << "Writing data into buffer objects.\n";
// Initialize instruction buffer
void *bufInstr = bo_instr.map<void *>();
memcpy(bufInstr, instr_v.data(), instr_v.size() * sizeof(int));
// Initialize Inout buffer 0
INOUT0_DATATYPE *bufInOut0 = bo_inout0.map<INOUT0_DATATYPE *>();
std::vector<INOUT0_DATATYPE> AVec(INOUT0_VOLUME);
for (int i = 0; i < INOUT0_VOLUME; i++) {
std::uint16_t u16 = (std::uint16_t)i;
std::bfloat16_t bf16 = *(std::bfloat16_t *)&u16;
AVec[i] = bf16;
}
memcpy(bufInOut0, AVec.data(), (AVec.size() * sizeof(INOUT0_DATATYPE)));
// Sync buffers to update input buffer values
bo_instr.sync(XCL_BO_SYNC_BO_TO_DEVICE);
bo_inout0.sync(XCL_BO_SYNC_BO_TO_DEVICE);
// ------------------------------------------------------
// Initialize run configs
// ------------------------------------------------------
unsigned num_iter = n_iterations + n_warmup_iterations;
float npu_time_total = 0;
float npu_time_min = 9999999;
float npu_time_max = 0;
int errors = 0;
// ------------------------------------------------------
// Main run loop
// ------------------------------------------------------
for (unsigned iter = 0; iter < num_iter; iter++) {
if (verbosity >= 1) {
std::cout << "Running Kernel.\n";
}
// Run kernel
if (verbosity >= 1)
std::cout << "Running Kernel.\n";
auto start = std::chrono::high_resolution_clock::now();
unsigned int opcode = 3;
auto run = kernel(opcode, bo_instr, instr_v.size(), bo_inout0, bo_inout1);
run.wait();
auto stop = std::chrono::high_resolution_clock::now();
bo_inout1.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
if (iter < n_warmup_iterations) {
/* Warmup iterations do not count towards average runtime. */
continue;
}
std::bfloat16_t *bufOut = bo_inout1.map<std::bfloat16_t *>();
// Copy output results and verify they are correct
std::vector<INOUT1_DATATYPE> CVec(INOUT1_VOLUME);
memcpy(CVec.data(), bufOut, (CVec.size() * sizeof(INOUT1_DATATYPE)));
if (do_verify) {
if (verbosity >= 1) {
std::cout << "Verifying results ..." << std::endl;
}
auto vstart = std::chrono::system_clock::now();
errors = verify(INOUT1_VOLUME, AVec, CVec, verbosity);
auto vstop = std::chrono::system_clock::now();
float vtime =
std::chrono::duration_cast<std::chrono::seconds>(vstop - vstart)
.count();
if (verbosity >= 1) {
std::cout << "Verify time: " << vtime << "secs." << std::endl;
}
} else {
if (verbosity >= 1)
std::cout << "WARNING: results not verified." << std::endl;
}
// Write trace values if trace_size > 0
if (trace_size > 0) {
test_utils::write_out_trace(((char *)bufOut) + INOUT1_SIZE, trace_size,
vm["trace_file"].as<std::string>());
}
// Accumulate run times
float npu_time =
std::chrono::duration_cast<std::chrono::microseconds>(stop - start)
.count();
npu_time_total += npu_time;
npu_time_min = (npu_time < npu_time_min) ? npu_time : npu_time_min;
npu_time_max = (npu_time > npu_time_max) ? npu_time : npu_time_max;
}
// ------------------------------------------------------
// Print verification and timing results
// ------------------------------------------------------
// TODO - Mac count to guide gflops
float macs = 0;
std::cout << std::endl
<< "Avg NPU time: " << npu_time_total / n_iterations << "us."
<< std::endl;
if (macs > 0)
std::cout << "Avg NPU gflops: "
<< macs / (1000 * npu_time_total / n_iterations) << std::endl;
std::cout << std::endl
<< "Min NPU time: " << npu_time_min << "us." << std::endl;
if (macs > 0)
std::cout << "Max NPU gflops: " << macs / (1000 * npu_time_min)
<< std::endl;
std::cout << std::endl
<< "Max NPU time: " << npu_time_max << "us." << std::endl;
if (macs > 0)
std::cout << "Min NPU gflops: " << macs / (1000 * npu_time_max)
<< std::endl;
if (!errors) {
std::cout << "\nPASS!\n\n";
return 0;
} else {
std::cout << "\nError count: " << errors << "\n\n";
std::cout << "\nFailed.\n\n";
return 1;
}
}