-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter_dataset.py
137 lines (120 loc) · 4.49 KB
/
filter_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import time
import numpy as np
import pandas as pd
import sys
from utils import isfloat, calc_distance, get_max_bounds, get_rectangle_bounds, saveCells
from geopy.geocoders import Nominatim
from sklearn.neighbors import BallTree
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Create topology from center point")
parser.add_argument(
'--name',
help='name for topology')
parser.add_argument(
'--city',
help='name of city')
parser.add_argument(
'--lat',
help='latitude')
parser.add_argument(
'--lon',
help='longitude')
parser.add_argument(
'--width',
help='width of area (default 2.0 km)')
parser.add_argument(
'--height',
help='height of area (default 2.0 km)')
args = parser.parse_args()
start = time.time()
lat = None
lon = None
if args.name is None:
print("Please set --name of topology!")
sys.exit()
if args.city is not None:
try:
geolocator = Nominatim(user_agent="Topology")
location = geolocator.geocode(args.city)
except:
location = None
if location is None or not hasattr(location, "latitude") or not hasattr(location, "longitude"):
print("No city found with this name! Please try again or use only --lat and --lon parameters.")
sys.exit()
else:
lat = location.latitude
lon = location.longitude
else:
if args.lon is None or args.lat is None:
print("no --lat and --lon set, please try again")
sys.exit()
else:
lat = args.lat
lon = args.lon
# default value for width and height (2km)
w = 2.0
h = 2.0
if args.width is not None and isfloat(args.width) is True:
w = float(args.width)
if args.height is not None and isfloat(args.height) is True:
h = float(args.height)
print("Get bounds of area by center point...")
coords = get_rectangle_bounds([lat, lon], w, h)
# set bounds
lon_min = coords[0][1]
lon_max = coords[1][1]
lat_min = coords[1][0]
lat_max = coords[0][0]
col_list = ['radio', 'cell', 'lon', 'lat']
print("Loading cell dataset...")
df_towers = pd.read_csv('data/cells_data/cell_towers_prepared.csv',
skipinitialspace=True, usecols=col_list)
print("Filter cells in area...")
df_towers = df_towers[df_towers['lon'].between(lon_min, lon_max, inclusive="both")]
df_towers = df_towers[df_towers['lat'].between(lat_min, lat_max, inclusive="both")]
# get max bounds of df --> [max_lat, min_lat, max_lon, min_lon]
number_cells = len(df_towers)
if number_cells > 0:
max_bounds = get_max_bounds(df_towers)
h_new = calc_distance(max_bounds[2], max_bounds[0], max_bounds[2], max_bounds[1])
w_new = calc_distance(max_bounds[2], max_bounds[0], max_bounds[3], max_bounds[0])
# calc average_cells_per_km2 for categorizing topology
area = w_new * h_new
tree = BallTree(np.deg2rad(df_towers[['lat', 'lon']].values), metric='haversine')
query_lats = df_towers['lat']
query_lons = df_towers['lon']
k = 3
if number_cells < 3:
k = 1
# get distances to k nearest neighbours
distances, indices = tree.query(np.deg2rad(np.c_[query_lats, query_lons]), k=k)
# sum up top k distances and add to dataframe
# df_distances = []
# for d in distances:
# df_distances.append(sum(d))
# df_towers['distances'] = df_distances
# calculate mean distance top k nearest neighbours per cell
r_km = 6371
di = []
for d in distances:
# remove all zero values
d = d[d != 0.]
if len(d) > 0:
di.append(d.mean() * r_km)
# overall mean distance per cell
mean_distance = np.mean(di)
# if mean distance > 0.5km => sparsely
if mean_distance > 0.5:
print("sparsely dataset created...")
saveCells(df_towers, args.name)
# if mean distance >= 0.1 and <= 0.5km => normal
elif 0.1 < mean_distance <= 0.5:
print("normal dataset created...")
saveCells(df_towers, args.name)
# if mean distance <= 0.1km => dense
else:
print("dense dataset created...")
saveCells(df_towers, args.name)
else:
print("no cells found in this area")