- Require Nx
~> 0.9
- Add batching to regression metrics
- Add
Scholar.Cluster.OPTICS
- Add
Scholar.Covariance.LedoitWolf
- Add
Scholar.Covariance.ShrunkCovariance
- Add
Scholar.CrossDecomposition.PLSSVD
- Add
Scholar.Decomposition.TruncatedSVD
- Add
Scholar.Impute.KNNImputter
- Add
Scholar.NaiveBayes.Bernoulli
- Add
Scholar.Preprocessing.Binarizer
- Add
Scholar.Preprocessing.RobustScaler
- Add
partial_fit/2
andincremental_fit/2
to PCA - Split
RNN
intoScholar.Neighbors.RadiusNNClassifier
andScholar.Neighbors.RadiusNNRegressor
- Unify shape checks across all APIs
- Add a notebook about manifold learning
- Make knn algorithm configurable on Trimap
- Add
d2_pinball_score
andd2_absolute_error_score
- Add LargeVis for visualization of large-scale and high-dimensional data in a low-dimensional (typically 2D or 3D) space
- Add
Scholar.Neighbors.KDTree
andScholar.Neighbors.RandomProjectionForest
- Add
Scholar.Metrics.Neighbors
- Add
Scholar.Linear.BayesianRidgeRegression
- Add
Scholar.Cluster.Hierarchical
- Add
Scholar.Manifold.Trimap
- Add Mean Pinball Loss function
- Add Matthews Correlation Coefficient function
- Add D2 Tweedie Score function
- Add Mean Tweedie Deviance function
- Add Discounted Cumulative Gain function
- Add Precision Recall f-score function
- Add f-beta score function
- Add convergence check to AffinityPropagation
- Default Affinity Propagation preference to
reduce_min
and make it customizable - Move preprocessing functionality to their own modules with
fit
andfit_transform
callbacks
- Split
KNearestNeighbors
intoKNNClassifier
andKNNRegressor
with custom algorithm support
- Remove
VegaLite.Data
in favour of future use ofTucan
- Do not use EXLA at compile time in
Metrics
This version requires Elixir v1.14+.
- Update notebooks
- Add support for
:f16
and:bf16
types inSVD
- Add
Affinity Propagation
- Add
t-SNE
- Add
Polynomial Regression
- Replace seeds with
Random.key
- Add 'unrolling loops' option
- Add support for custom optimizers in
Logistic Regression
- Add
Trapezoidal Integration
- Add
AUC-ROC
,AUC
, andROC Curve
- Add
Simpson rule integration
- Unify tests
- Add
Radius Nearest Neighbors
- Add
DBSCAN
- Add classification metrics:
Average Precision Score
,Balanced Accuracy Score
,Cohen Kappa Score
,Brier Score Loss
,Zero-One Loss
,Top-k Accuracy Score
- Add regression metrics:
R2 Score
,MSLE
,MAPE
,Maximum Residual Error
- Add support for axes in
Confusion Matrix
- Add support for broadcasting in
Metrics.Distances
- Update CI
- Add
Gaussian Mixtures
- Add Model selection functionalities:
K-fold
,K-fold Cross Validation
,Grid Search
- Change structure of metrics in
Scholar
- Add a guide with
Cross-Validation
andGrid Search
First release.