-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
45 lines (33 loc) · 1.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from flask import Flask, request, jsonify, render_template
import pickle
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
# Using FWI : fire weather index
# import ridge regressor and standard scaler pickle files
ridge_model = pickle.load(open('Models/ridge.pkl', 'rb'))
standard_scaler = pickle.load(open('Models/scaler.pkl', 'rb'))
app = Flask(__name__)
#app = application
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predictdata', methods=['GET','POST'])
def predict_datapoint():
if request.method == 'POST':
Temperature = float(request.form.get('Temperature'))
RH = float(request.form.get('RH')) # Relative Humidity
Ws = float(request.form.get('Ws')) # Wind Speed
Rain = float(request.form.get('Rain')) # Rainfall
FFMC = float(request.form.get('FFMC')) # Fine Fuel Moisture Code
DMC = float(request.form.get('DMC')) # Duff Moisture Code
ISI = float(request.form.get('ISI')) # Initial Spread Index
Classes = float(request.form.get('Classes')) # Classes
Region = float(request.form.get('Region')) # Region
new_data_scaled = standard_scaler.transform([[Temperature, RH, Ws, Rain, FFMC, DMC, ISI, Classes, Region]])
result = ridge_model.predict(new_data_scaled)
return render_template('home.html', results = result[0])
else:
return render_template('home.html')
if __name__ == '__main__':
app.run(host = "0.0.0.0")