-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScript_HPP_Pilot_PA_Preproc.r
228 lines (192 loc) · 11.6 KB
/
Script_HPP_Pilot_PA_Preproc.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#### Code_pre-proc_ProlificAcad_HPP####
#
### Purpose ###
# This script is for pre-processing the pilot data from prolific Academia as reported in IJzerman et al.(2018), Human Penguin Project (HPP).
# Overview of HPP: https://osf.io/2rm5b/
#
#
# Code author: Chuan-Peng Hu, PhD,
# Affliated to: Neuroimaging Center (NIC), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany;
# Email: [email protected]
#
# Author Date (d/m/y) Notes/Changes
# ======== ========= ========
# C-P. Hu 09/08/18 split the preprocess into two file: preproc, and score calculating, this one is preproc.
#
#
### input data ####
#
# Oringinal data: sav file: 'prolific academic corrected dataset december 2015.sav'
#
# Revised data: 'prolific_academic_corrected_201512_rev_yjx2_3.csv' (with codebook 'Codebook_HPP_prolific_academic_0619.xlsx')
# We thanks Jixin Yin for check the data and prepare the code book.
#
# Also, the weight, height, avghumid, and mintemp data were from the data reported in previous version of the manuscript:pilotpenguins .sav
#
### output file and Variables ####
#
# output file: 'Data_Raw_HPP_Pilot_PA_Share.csv'
#
# Data related to the following variables are kept (reported in the article):
# Age -- using 2015 minus the birth year.
# anxiety -- subscale of attachment, Fraley et al., 2000, using sum score
# attachhome -- attachment to home; Harris et al., 1996 using average score
# attachphone -- attachment to the phone using sum score
# avghumid -- average humidity of the day
# avgtemp -- average temperature
# avoidance -- subscale of attachment, Fraley et al., 2000 using sum score
# gluctot -- daily sugary drink consumption, Henriksen et al., 2014
# health -- health condition
# height -- height (in meter)
# Medication -- medication condition
# mintemp -- minimum temperature of the day
# networksize -- social network; Cohen et al., 1997
# nostalgia -- (Routledge et al., 2008) using sum score
# selfcontrol -- self-control, Tangney et al., 2004 using sum score
# Sex
# site -- the plocation of participants
# smoking --
# socialdiversity--
# socialembedded -- social network; Cohen et al., 1997
# stress -- Perceived stress (Cohen & Wills, 1985) using sum score
# weight -- wightkg
### Preparing ####
Sys.setlocale("LC_ALL", "English") # set local encoding to English
Sys.setenv(LANG = "en") # set the feedback language to English
rm(list = setdiff(ls(), lsf.str())) # remove all variables except functions
# packages, if not exist, install.
pkgTest <- function(x){
if (!require(x,character.only = TRUE)){
install.packages(x,dep = TRUE)
if(!require(x,character.only = TRUE)) stop("Package not found")
}
}
pkgNeeded <- c("psych",'tidyverse','foreign')
lapply(pkgNeeded,pkgTest)
rm('pkgNeeded') # remove the variable 'pkgNeeded';
#### Preprocessing #####
# Load data
DataRaw <- read.csv("prolific_academic_corrected_201512_rev_yjx2_3.csv", header = TRUE,sep = ',', stringsAsFactors=FALSE,na.strings=c(""," ","NA"))
## read the data from previous validated
repoData_PA_s <- read.csv("reportedPA_rm_diff_newer.csv", header = TRUE,sep = ',', stringsAsFactors=FALSE,na.strings=c(""," ","NA"))
repoData_PA_s_reord <- repoData_PA_s[with(repoData_PA_s, order(age, anxiety,avoidance)), ] # order based on "age", "anxiety", and "avoidance"
# recode the temperature:
# there was one participants filled 32 for Q7 and 2 for Q8, resulted 0 for t1; however, the results of Q66 was 1,
# and again the answer for Q65 was 32. so here I change the answer for Q8 as 1.
DataRaw$Q8[DataRaw$Q7 == 32 & DataRaw$Q8 == 2] <- 1
# DataRaw$Temperature_t1_r <- if (any( DataRaw$Q8 == 2)) (((DataRaw$Q7-32)*5)/9) else DataRaw$Q7
DataRaw$Temperature_t1_r <- DataRaw$Q7
# transfer the temperature at T1 to the same scale
for (ii in 1:length(DataRaw$Q8)){
if (DataRaw$Q8[ii] ==2){
DataRaw$Temperature_t1_r[ii] <- ((DataRaw$Q7[ii]-32)*5)/9
}
else DataRaw$Temperature_t1_r[ii] <- DataRaw$Q7[ii]
}
# DataRaw$Temperature_t2_r <- if (any(DataRaw$Q66 == 2)) (((DataRaw$Q65-32)*5)/9) else DataRaw$Q65
DataRaw$Temperature_t2_r <- DataRaw$Q65
DataRaw$Q66r <- DataRaw$Q66
DataRaw$Q66r[is.na(DataRaw$Q66r)] <- 0
# transfer the temperature at T2 to the same scale
for (ii in 1:length(DataRaw$Q66r)){
if (DataRaw$Q66r[ii] ==2){
DataRaw$Temperature_t2_r[ii] <- ((DataRaw$Q65[ii]-32)*5)/9
}
else DataRaw$Temperature_t2_r[ii] <- DataRaw$Q65[ii]
}
DataRaw$avgtemp_r <- rowSums(DataRaw[,c('Temperature_t1_r','Temperature_t2_r')],na.rm = T)/2
# correct the value for participatn with NA for Q65
DataRaw$avgtemp_r[is.na(DataRaw$Q65)] <- DataRaw$Temperature_t1_r[is.na(DataRaw$Q65)]
# unify the birth year
DataRaw$birthyear <- as.integer(paste("19",as.character(round(DataRaw$Q87,2)),sep = ''))
# exclude participants
# criteria:
# c1: average temperation is greater than 34.99
# c2: not drink or eat somethin cold or warm in 10 minutes before (eatdrink = 1)
# c3: no exercise in 60 mintues before the survey (exercise = 2)
# first: filter eatdrinking
valid.data_Eat <- subset(DataRaw, eatdrink != 1) # eat or drink (3 participants)
valid.data_NA <- subset(DataRaw, is.na(eatdrink)) # eat or drink data is NA (2 participants)
valid.data_NoEat <- subset(DataRaw, eatdrink == 1) # No eat of drink
# Second: filter exercise
valid.data_exercise <- subset(valid.data_NoEat, exercise != 2) # did exercise within one hour (2 participants)
valid.data_exercise_NA <- subset(valid.data_NoEat, is.na(exercise))
valid.data_NoExercise <- subset(valid.data_NoEat, exercise == 2) # did exercise within one hour
# Third: filter average temperature
valid.data_Tmp <- subset(valid.data_NoExercise, avgtemp_r < 34.99) # participant that not excluded by the other two criteria (1 participant)
valid.data <- subset(DataRaw,avgtemp_r > 34.99 & eatdrink == 1 & exercise == 2) # average temperature higher than 34.99 is valid
# criteria: T1 is greater than 34.99
#valid.data1 <- subset(DataRaw,Temperature_t1_r > 34.99)
# criteria: T2 is greater than 34.99
#valid.data2 <- subset(DataRaw,Temperature_t2_r > 34.99)
# criteria: T1 & T2 is greater than 34.99
#valid.data3 <- subset(DataRaw,Temperature_t2_r > 34.99 & Temperature_t1_r > 34.99 )
# criteria: T1 or T2 or average is greater than 34.99
#valid.data4 <- subset(DataRaw,Temperature_t2_r > 34.99 | Temperature_t1_r > 34.99 | avgtemp_r > 34.99)
valid.data$age <- valid.data$birthyear # calcuate the age for each participant
# calculated the anxiety and attachhome score for re-ordering
ECRanxietyNames <- c( "ECR1", "ECR2", "ECR3", "ECR4","ECR5", "ECR6", "ECR7", "ECR8", "ECR9", "ECR10", "ECR11",
"ECR12","ECR13","ECR14","ECR15","ECR16", "ECR17","ECR18")
ECRanxietyKeys <- c(1,2,3,4,5,6,7,8,-9,10,-11,12,13,14,15,16,17,18) # reverse coded as negative
ECRanxietyKeys2 <- c("ECR1", "ECR2", "ECR3", "ECR4","ECR5", "ECR6", "ECR7", "ECR8", "-ECR9", "ECR10", "-ECR11",
"ECR12","ECR13","ECR14","ECR15","ECR16", "ECR17","ECR18")
ECRanxietyScore <- psych::scoreItems(ECRanxietyKeys2,valid.data[,ECRanxietyNames], totals = T, min = 1, max = 7)
valid.data$anxiety <- ECRanxietyScore$scores # sum score
## score and alpha for ECR avoidance ####
ECRavoidanceNames <- c( "ECR19","ECR20","ECR21","ECR22","ECR23","ECR24","ECR25","ECR26","ECR27","ECR28","ECR29",
"ECR30","ECR31","ECR32","ECR33", "ECR34","ECR35","ECR36")
ECRavoidanceKeys <- c(1,-2,3,-4,5,6,7,-8,-9,-10,-11,-12,-13,14,-15,-16,-17,-18) # reverse coded as negative
ECRavoidanceKeys2 <- c("ECR19","-ECR20","ECR21","-ECR22", "ECR23","ECR24","ECR25","-ECR26","-ECR27",
"-ECR28","-ECR29","-ECR30","-ECR31","ECR32","-ECR33", "-ECR34","-ECR35","-ECR36")
ECRavoidanceAlpha <- psych::alpha(valid.data[,ECRavoidanceNames],
keys=ECRavoidanceKeys) # calculate the alpha coefficient
print(ECRavoidanceAlpha$total) # std. alpha 0.9451,
ECRavoidanceScore <- psych::scoreItems(ECRavoidanceKeys2,valid.data[,ECRavoidanceNames], totals = T, min = 1, max = 7)
#Datasum$ECRavoidance <- ECRavoidanceScore$scores # average score
valid.data$avoidance <- ECRavoidanceScore$scores # sum score
## score and alpha for attachemnt to home
homeNames <- c( "HOME1","HOME2","HOME3","HOME4","HOME5","HOME6","HOME7","HOME8","HOME9" )
homeKeys <- c(1,2,3,4,5,6,7,8,9) # reverse coded as negative
valid.data$attachhome <- rowSums(valid.data[,homeNames],na.rm = T)/length(homeNames)
## re-order the data
valid.data_reord <- valid.data[with(valid.data, order(age, anxiety,avoidance)), ] # order based on "age", "anxiety", and "avoidance"
## save the useful variable for later open data
SNINames <- paste("SNI",1:32,sep = '') # colnames for social network indices
scontrolNames <- c("scontrol1","scontrol2","scontrol3" ,"scontrol4","scontrol5" , "scontrol6" ,
"scontrol7","scontrol8", "scontrol9", "scontrol10", "scontrol11" ,"scontrol12", "scontrol13" )
stressNames <- c("stress1" , "stress2" ,"stress3","stress4", "stress5", "stress6", "stress7", "stress8", "stress9", "stress10",
"stress11", "stress12", "stress13","stress14")
phoneNames <- c( "phone1", "phone2","phone3", "phone4","phone5", "phone6","phone7","phone8","phone9")
onlineNames <- c( "onlineid1", "onlineid2","onlineid3","onlineid4", "onlineid5", "onlineid6","onlineid7","onlineid8",
"onlineid9", "onlineid10", "onlineide11")
ECRNames <- c( "ECR1", "ECR2", "ECR3", "ECR4","ECR5", "ECR6", "ECR7", "ECR8", "ECR9", "ECR10", "ECR11",
"ECR12","ECR13","ECR14","ECR15","ECR16", "ECR17","ECR18","ECR19","ECR20","ECR21","ECR22",
"ECR23","ECR24","ECR25","ECR26","ECR27","ECR28","ECR29","ECR30","ECR31","ECR32","ECR33",
"ECR34","ECR35","ECR36")
nostagliaNames <- c( "SNS1" ,"SNS2","SNS3","SNS4", "SNS5","SNS6" ,"SNS7" )
homeNames <- c( "HOME1","HOME2","HOME3","HOME4","HOME5","HOME6","HOME7","HOME8","HOME9" )
didfNames <- c("ALEX1","ALEX2","ALEX3","ALEX4","ALEX5" ,"ALEX6", "ALEX7", "ALEX8", "ALEX9" ,"ALEX10","ALEX11")
eotNames <- c("ALEX12","ALEX13","ALEX14","ALEX15" ,"ALEX16")
OtherNames <- c('birthyear','Sex','avgtemp','health')
selectNames <- c(OtherNames,SNINames,scontrolNames,stressNames,phoneNames,onlineNames,ECRNames,homeNames,nostagliaNames,didfNames,eotNames)
valid.data_share <- valid.data_reord[,selectNames]
# newNames <- c('glucoseplosone','Site','avghumid','mintemp')
## gluctot and artgluctot (already calculated in multi-site dataset)
valid.data_share$glucoseplosone <- rowSums(valid.data_reord[,c("Q89_6_1_TEXT",'Q89_7_1_TEXT','Q89_12_1_TEXT')],na.rm = T)
#Datasum$artgluctot <- rowSums(valid.data[,c("Q89_8_1_TEXT",'Q89_9_1_TEXT','Q89_13_1_TEXT')],na.rm = T)
valid.data_share$Site <- "ProlificAcademic"
valid.data_share$birthyear <- valid.data_reord$birthyear
valid.data_share$avgtemp <- valid.data_reord$avgtemp_r
#valid.data_share$Medication <- valid.data_reord$meds
valid.data_share$Smoking <- valid.data_reord$smoke
# from osf reported data
valid.data_share$avghumid <- repoData_PA_s_reord$avghumid
valid.data_share$mintemp <- repoData_PA_s_reord$mintemp
#valid.data_share$heightm <- repoData_PA_s_reord$heightm
#valid.data_share$weightkg <- repoData_PA_s_reord$weightkg
#valid.data_share <-valid.data_share[,order(names(valid.data_share))] # order columns by alphabeta
valid.data_share <- valid.data_share %>%
dplyr::select("Site","birthyear","Sex","health", "avgtemp","glucoseplosone", "Smoking",
"avghumid","mintemp",everything())
# write the sharable data
write.csv(valid.data_share,'Data_Raw_HPP_Pilot_PA_Share.csv',row.names = F)