-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexemplo_21.m
90 lines (65 loc) · 2.23 KB
/
exemplo_21.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
% NASBHT - Numerical and Analytical Solutions of BioHeat Transfer problems
%
% Copyright (C) 2018. Hugo Fernando Maia Milan
%
% File: exemplo_21.m
% Author: Hugo Fernando Maia Milan
% Email: [email protected]
%
% NASBHT is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% NASBHT is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with NASBHT. If not, see <https://www.gnu.org/licenses/>.
% Algoritmo que resolve o exemplo 21.
wb=0.0005;%perfusão sanguínea
pb=1085;%peso específico do sangue
cb=3680;%calor específico do sangue
Tb=37;%temperatura do sangue
k=0.3;%condutividade térmica do tecido
qmet = 700;%produção de calor metabólico
L=0.03;%comprimento do tecido
TC=37;%temperatura na fronteira interna
Tar = 20;% temperatura do ar
rc = 0.02;% resistência
Tr = 22; % temperatura radiante média
rr = 17e6; % resistência ao fluxo de calor por radiação
l = sqrt(wb*pb*cb/k);
n = Tb + qmet/(wb*pb*cb);
g = k*l;
s = sinh(l*L);
c = cosh(l*L);
t = tanh(l*L);
x = 0:L/100:L;
TL1 = 37;
rre = rr/((TL1 + Tr + 273.15*2)*...
((TL1+273.15)^2 + (Tr+273.15)^2));
re = rre*rc/(rre + rc);
Te = (rc*Tr + rre*Tar)/(rre + rc);
TL2 = (Te/re + TC*g/s + n*g*(1/t - 1/s))/(g/t + 1/re);
dif = (TL2 - TL1)/TL2*100;
%TL3
rre = rr/((TL2 + Tr + 273.15*2)*...
((TL2+273.15)^2 + (Tr+273.15)^2));
re = rre*rc/(rre + rc);
Te = (rc*Tr + rre*Tar)/(rre + rc);
TL3 = (Te/re + TC*g/s + n*g*(1/t - 1/s))/(g/t + 1/re);
dif = (TL2 - TL3)/TL3*100;
xa = x;
Ta = TL3*sinh(l*xa)/s ...
+ TC*sinh(l*(L - xa))/s ...
+ n*(1 - (sinh(l*xa) + sinh(l*(L - xa)))/s);
qC = -TL3*g/s + TC*g/t + n*g*(1/s - 1/t);
qconv = (TL - Tar)/rc;
% plot(xa,Ta)
%% efeito do fluxo de calor
qLq = -2500:2500;
TLq = -qLq*t/g + TC/c + n*(1 - 1/c);
% plot(qLq,TLq)