-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvol_swe_code.R
39 lines (35 loc) · 1.62 KB
/
vol_swe_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
test<-raster_list_c1[[90]]
volumetric_swe(test)
library(BiocManager)
library(rhdf5)
library(tidyverse)
library(rgeos)
library(rasterVis) #https://oscarperpinan.github.io/rastervis/#levelplot
library(rgdal)
library(raster)
library(data.table)
library(gtools)
vol_swe_new <-function(x){
swe_sum <-cellStats(x,'sum', digits=0, na.rm=TRUE) #sum of all values swe in [mm]
n_na<-cellStats(x, function(i, ...) sum(is.na(i))) #number of na values
n_na<-as.numeric(n_na) #properly format
cell_area <- (.0081) # [km^2]
n_cells <-ncell(x) #number of total cells in the raster
cells_used <- (n_cells-n_na) #number of cells reporting data
avg_cell_swe <-((swe_sum/cells_used)/1000000) #average swe per cell in [km]
volumetric_swe <-(cells_used*cell_area*avg_cell_swe) #volumetric swe [km^3]
print(volumetric_swe)
}
function(x) {
swe_sum <-cellStats(x, 'sum', digits=0, na.rm=TRUE) #sum of all values swe in [mm]
cell_area <- (.0081) # [km^2]
n_cells <-ncell(x) #number of total cells in the raster
swe_freq<-as.data.frame(freq(x)) #create df for data values and thier frequency
swe_freq <-swe_freq %>% mutate_all(~replace(., is.na(.), -9)) %>% filter(value =="-9") #change NA back to -32768 so can be isolated and manipulated
n_na <- sum(swe_freq$count) #sum the count column, giving you number of na cells
cells_used <- (n_cells-n_na) #number of cells reporting data
avg_cell_swe <-((swe_sum/cells_used)/1000000) #average swe per cell in [km]
volumetric_swe <-(cells_used*cell_area*avg_cell_swe) #volumetric swe [km^3]
print(volumetric_swe)
}
system.time(results_list_c1<-(lapply(raster_list_c1, function(x) volumetric_swe(x))))