-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathdata_loader.py
48 lines (43 loc) · 1.31 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
def data_loader(root, batch_size=256, workers=1, pin_memory=True):
traindir = os.path.join(root, 'ILSVRC2012_img_train')
valdir = os.path.join(root, 'ILSVRC2012_img_val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
)
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
])
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=workers,
pin_memory=pin_memory,
sampler=None
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=workers,
pin_memory=pin_memory
)
return train_loader, val_loader