-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBergmanPath.nb
4046 lines (3958 loc) · 224 KB
/
BergmanPath.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 228859, 4037]
NotebookOptionsPosition[ 226118, 3958]
NotebookOutlinePosition[ 226459, 3973]
CellTagsIndexPosition[ 226416, 3970]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
"Eneyne", "=",
"\"\<10\n\n C 0. 0.684687 1.08014 \n C 0. -0.684687 1.08014 \n C 0. \
1.51002 -0.071507 \n C 0. -1.51002 -0.071507 \n C 0. 2.27026 -1.03496 \n C 0. \
-2.27026 -1.03496 \n H 0. 2.91851 -1.89616 \n H 0. -2.91851 -1.89616 \n H 0. \
1.19912 2.05411 \n H 0. -1.19912 2.05411 \n\>\""}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
"TS", "=",
"\"\<10\n\n C -0.0154985 0.70431 1.23327 \n C -0.0154985 -0.70431 1.23327 \
\n C -0.0000520611 1.37886 0.00414267 \n C -0.0000520611 -1.37886 0.00414267 \
\n C 0.0153905 1.05781 -1.22467 \n C 0.0153905 -1.05781 -1.22467 \n H \
0.0286103 1.32274 -2.27662 \n H 0.0286103 -1.32274 -2.27662 \n H -0.0276499 \
1.22319 2.20019 \n H -0.0276499 -1.22319 2.20019 \n\>\""}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
"Prod", "=",
"\"\<10\n\nC 0.0149939 0.723983 1.19311 \nC 0.0152178 -0.693769 1.21093 \n\
C -0.000210626 1.33377 -0.0167602 \nC 0.000210626 -1.33377 0.0167602 \nC \
-0.0152178 0.693769 -1.21093 \nC -0.0149939 -0.723983 -1.19311 \nH -0.0271866 \
1.19477 -2.16333 \nH -0.0268007 -1.24876 -2.13262 \nH 0.0268007 1.24876 \
2.13262 \nH 0.0271866 -1.19477 2.16333\n\>\""}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
"rmst", "=",
"\"\<$rem\njobtype sp\nunrestricted false \nbasis 6-31G*\nexchange HF\n\
correlation VOD\nmgc_amodel 0\nmgc_max_rank 2\nmgc_nlpairs 3\nmgc_gvb_torun 0 \
\ncc_gvb_guess true\ncc_t_conv 6\ncc_canonize false\ngvb_n_pairs 4\n\
gvb_restart 1\nscf_guess read\nskip_scfman true\nscf_convergence 11\n\
scf_algorithm diis\nthresh 14\nsymmetry false\nsym_ignore true\n$end\n\n@@@\>\
\""}], ";"}]}], "Input",
CellChangeTimes->{{3.446341852681851*^9, 3.4463420153419733`*^9},
3.446342051738963*^9, {3.446345665314849*^9, 3.446345668404271*^9}, {
3.446345917100135*^9, 3.446345937383004*^9}, {3.446345990564612*^9,
3.446345998201796*^9}, {3.446346035563216*^9, 3.446346036267067*^9}, {
3.446346087080249*^9, 3.446346093291749*^9}, {3.446346134374588*^9,
3.446346139705152*^9}, {3.4463465187939*^9, 3.446346525124495*^9}, {
3.446347850873438*^9, 3.446347852927458*^9}, {3.446347941930491*^9,
3.44634794333799*^9}, {3.446348700986702*^9, 3.446348703213209*^9}, {
3.446348736875105*^9, 3.446348738773004*^9}, 3.446348819078843*^9,
3.446348863068449*^9, {3.446348917446397*^9, 3.4463489211015987`*^9}, {
3.446348989568215*^9, 3.446349013729796*^9}, {3.4463770946505327`*^9,
3.446377096953676*^9}, {3.44637718260984*^9, 3.446377184176217*^9}, {
3.44637878179531*^9, 3.446378818123023*^9}, {3.446378885032736*^9,
3.446378950654414*^9}, {3.446379087979561*^9, 3.4463790904645033`*^9}, {
3.4463793722266893`*^9, 3.446379376920076*^9}, {3.446381874376964*^9,
3.446381875430298*^9}, {3.446388919787747*^9, 3.446389161665962*^9}, {
3.446389278716887*^9, 3.4463892811953363`*^9}, {3.4463893195841303`*^9,
3.446389346860776*^9}, {3.4463894326741247`*^9, 3.446389443877913*^9}, {
3.44638951499832*^9, 3.446389516597756*^9}, {3.446389714665214*^9,
3.446389721135991*^9}, 3.456684031996263*^9, {3.456684105074741*^9,
3.4566841056302443`*^9}, {3.45668427280785*^9, 3.456684286798327*^9},
3.45668478395824*^9, {3.4567108263192787`*^9, 3.456710834798678*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"ThePath", "=",
RowBox[{"InterpolateGeometries", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Eneyne", ",", "TS", ",", "Prod"}], "}"}], ",", "20", ",",
"rmst"}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.446342937653924*^9, 3.446342960013571*^9}, {
3.446380435845027*^9, 3.446380436345057*^9}, {3.446381802723629*^9,
3.44638180682456*^9}, 3.446402074206317*^9, {3.4464023228136797`*^9,
3.446402323164908*^9}, {3.4464024408107452`*^9, 3.446402440983302*^9}, {
3.446402481577829*^9, 3.446402481648169*^9}, 3.4464025694131927`*^9, {
3.446408956020886*^9, 3.446408956098485*^9}, {3.446434808805344*^9,
3.446434808937235*^9}, {3.446435024369882*^9, 3.446435025049221*^9}, {
3.450892753057832*^9, 3.450892757609866*^9}, {3.45668483274594*^9,
3.456684837370338*^9}, {3.4568418117817383`*^9, 3.456841811926976*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Input Geometries: \"\>", "\[InvisibleSpace]",
Graphics3DBox[{
{RGBColor[1, 0, 0],
Point3DBox[{{0., 0.684687, 1.08014}, {0., -0.684687, 1.08014}, {0.,
1.51002, -0.071507}, {0., -1.51002, -0.071507}, {0.,
2.27026, -1.03496}, {0., -2.27026, -1.03496}, {0.,
2.91851, -1.89616}, {0., -2.91851, -1.89616}, {0., 1.19912, 2.05411}, {
0., -1.19912, 2.05411}}]},
{RGBColor[0, 1, 0],
Point3DBox[{{-0.0154985, 0.70431, 1.23327}, {-0.0154985, -0.70431,
1.23327}, {-0.0000520611, 1.37886,
0.00414267}, {-0.0000520611, -1.37886, 0.00414267}, {
0.015390500000000001`, 1.05781, -1.22467}, {
0.015390500000000001`, -1.05781, -1.22467}, {0.0286103,
1.32274, -2.27662}, {0.0286103, -1.32274, -2.27662}, {-0.0276499,
1.22319, 2.20019}, {-0.0276499, -1.22319, 2.20019}}]},
{RGBColor[1, 0, 0],
Point3DBox[{{0.014993900000000001`, 0.723983, 1.19311}, {
0.0152178, -0.693769, 1.21093}, {-0.000210626, 1.33377, -0.0167602}, {
0.000210626, -1.33377, 0.0167602}, {-0.0152178,
0.693769, -1.21093}, {-0.014993900000000001`, -0.723983, -1.19311}, \
{-0.0271866,
1.19477, -2.16333}, {-0.026800700000000004`, -1.24876, -2.13262}, {
0.026800700000000004`, 1.24876, 2.13262}, {0.0271866, -1.19477,
2.16333}}]}},
Axes->True,
BoxRatios->Automatic,
PlotRange->{{-0.0276499, 0.0286103}, {-2.91851, 2.91851}, Automatic},
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}, {Automatic, Automatic}}]}],
SequenceForm["Input Geometries: ",
Graphics3D[{{
Directive[
Hue[0.67, 0.6, 0.6],
Directive[
RGBColor[1, 0, 0]]],
Point[{{0., 0.684687, 1.08014}, {0., -0.684687, 1.08014}, {0.,
1.51002, -0.071507}, {0., -1.51002, -0.071507}, {0.,
2.27026, -1.03496}, {0., -2.27026, -1.03496}, {0.,
2.91851, -1.89616}, {0., -2.91851, -1.89616}, {0., 1.19912, 2.05411}, {
0., -1.19912, 2.05411}}]}, {
Directive[
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
RGBColor[0, 1, 0]]],
Point[{{-0.0154985, 0.70431, 1.23327}, {-0.0154985, -0.70431,
1.23327}, {-0.0000520611, 1.37886,
0.00414267}, {-0.0000520611, -1.37886, 0.00414267}, {
0.015390500000000001`, 1.05781, -1.22467}, {
0.015390500000000001`, -1.05781, -1.22467}, {0.0286103,
1.32274, -2.27662}, {0.0286103, -1.32274, -2.27662}, {-0.0276499,
1.22319, 2.20019}, {-0.0276499, -1.22319, 2.20019}}]}, {
Directive[
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
RGBColor[1, 0, 0]]],
Point[{{0.014993900000000001`, 0.723983, 1.19311}, {
0.0152178, -0.693769, 1.21093}, {-0.000210626, 1.33377, -0.0167602}, {
0.000210626, -1.33377, 0.0167602}, {-0.0152178,
0.693769, -1.21093}, {-0.014993900000000001`, -0.723983, -1.19311}, \
{-0.0271866,
1.19477, -2.16333}, {-0.026800700000000004`, -1.24876, -2.13262}, {
0.026800700000000004`, 1.24876, 2.13262}, {0.0271866, -1.19477,
2.16333}}]}}, {
Axes -> True, BoxRatios -> Automatic,
PlotRange -> {{-0.0276499, 0.0286103}, {-2.91851, 2.91851}, Automatic},
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}, {Automatic, Automatic}}}]],
Editable->False]], "Print",
CellChangeTimes->{3.4568472244626617`*^9, 3.4569408997421637`*^9,
3.460134925847505*^9, 3.4613745411131563`*^9, 3.4655816501315403`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"Interpolation", "::", "\<\"inhr\"\>"}],
RowBox[{
":", " "}], "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Requested order is too high; \
order has been reduced to \\\\\\\"\\\", \
\\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\!\\({2}\\), \\\"MT\\\"]\\)\
\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\".\\\\\\\"\\\", \\\"MT\\\"]\\) \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/Interpolation/inhr\\\", \
ButtonNote -> \\\"Interpolation::inhr\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.4568472247170486`*^9, 3.456940899910926*^9,
3.4601349279949503`*^9, 3.461374541203759*^9, 3.465581650366158*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"Interpolation", "::", "\<\"inhr\"\>"}],
RowBox[{
":", " "}], "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Requested order is too high; \
order has been reduced to \\\\\\\"\\\", \
\\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\!\\({2}\\), \\\"MT\\\"]\\)\
\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\".\\\\\\\"\\\", \\\"MT\\\"]\\) \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/Interpolation/inhr\\\", \
ButtonNote -> \\\"Interpolation::inhr\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.4568472247170486`*^9, 3.456940899910926*^9,
3.4601349279949503`*^9, 3.461374541203759*^9, 3.465581650369938*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"Interpolation", "::", "\<\"inhr\"\>"}],
RowBox[{
":", " "}], "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Requested order is too high; \
order has been reduced to \\\\\\\"\\\", \
\\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\!\\({2}\\), \\\"MT\\\"]\\)\
\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\".\\\\\\\"\\\", \\\"MT\\\"]\\) \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/Interpolation/inhr\\\", \
ButtonNote -> \\\"Interpolation::inhr\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.4568472247170486`*^9, 3.456940899910926*^9,
3.4601349279949503`*^9, 3.461374541203759*^9, 3.4655816503722897`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"General", "::", "\<\"stop\"\>"}],
RowBox[{
":", " "}], "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Further output of \\\\\\\"\\\
\", \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\!\\(Interpolation :: \\\"inhr\
\\\"\\), \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\" will be \
suppressed during this calculation.\\\\\\\"\\\", \\\"MT\\\"]\\) \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \
ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.4568472247170486`*^9, 3.456940899910926*^9,
3.4601349279949503`*^9, 3.461374541203759*^9, 3.465581650374538*^9}],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Path: \"\>", "\[InvisibleSpace]",
Graphics3DBox[{{
{RGBColor[1, 0, 0],
Point3DBox[{{0., 0.684687, 1.08014}, {0., -0.684687, 1.08014}, {0.,
1.51002, -0.071507}, {0., -1.51002, -0.071507}, {0.,
2.27026, -1.03496}, {0., -2.27026, -1.03496}, {0.,
2.91851, -1.89616}, {0., -2.91851, -1.89616}, {0., 1.19912,
2.05411}, {0., -1.19912, 2.05411}}]},
{RGBColor[0, 1, 0],
Point3DBox[{{-0.0154985, 0.70431, 1.23327}, {-0.0154985, -0.70431,
1.23327}, {-0.0000520611, 1.37886,
0.00414267}, {-0.0000520611, -1.37886, 0.00414267}, {
0.015390500000000001`, 1.05781, -1.22467}, {
0.015390500000000001`, -1.05781, -1.22467}, {0.0286103,
1.32274, -2.27662}, {0.0286103, -1.32274, -2.27662}, {-0.0276499,
1.22319, 2.20019}, {-0.0276499, -1.22319, 2.20019}}]},
{RGBColor[1, 0, 0],
Point3DBox[{{0.014993900000000001`, 0.723983, 1.19311}, {
0.0152178, -0.693769, 1.21093}, {-0.000210626, 1.33377, -0.0167602}, {
0.000210626, -1.33377, 0.0167602}, {-0.0152178,
0.693769, -1.21093}, {-0.014993900000000001`, -0.723983, -1.19311}, \
{-0.0271866,
1.19477, -2.16333}, {-0.026800700000000004`, -1.24876, -2.13262}, {
0.026800700000000004`, 1.24876, 2.13262}, {0.0271866, -1.19477,
2.16333}}]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], Line3DBox[CompressedData["
1:eJwd13k8VN8bB3DtlsiWfY9s2SOSjj2U+kbJll3ZUpbsCo0Zw2CKFipLFMnS
Imsca6kkJSopZblalOUiSfV75jev1/zzft3XnXOf89zPeUbW67id70o2NrZe
+K5i+/9HT/avWHPzy/Sauc/jiFNPfczYagaxdfw75tuy2KyhEj7J/WUcveK/
mviJ5f8EPg41seNU4cNyiuBtRlSuJOsZlCBY0CxRL4J/39PLcALnOPVorM0G
ruf/uthRpYR7SfYjzeDmpWsqzGxn0Mc5oXLlq/rYNFNZKOXrOAosOpFtYjeD
WjSatP5EWmEzXZco8clxlLR1BVZ3nUEew1V7bqo54lajBHPTqXH0snX9mZ7j
M6gjyGYHT6of7r/i0yC8MI7Wuur+2pszgyLiT41seRiCT1bKHoteHkf296xn
2ptn0O1TaVtaPkXgnkF+o8aVBNpT0iVqOTKDeoWNsZdoHC5q4/lH4SCQ5OGY
98HrZtEYf/s94YMJeE5fYG5wA4EWRx9sH1CaRfJ9rfZ8xUm48nPwaJ0QgYqf
h6Ve3z2L7gxbPvFrouA5dRUyQpJAxyhM8YCgWaT9J9TMlUHF8ns+qbZuItC5
YVPFevosytqhynPVMQU3nzb1z1Ih0JBsu7Zc6SxqueFTJDBMx7yuCU9mNAnE
/rTTZ0f7LJpkvskTN0jDlNBhE81tBHJrXqeZMzSL9COKS3xpDPxNeunRghGB
uHpn5tsXZlFXs3dF1aV0/NtXyc/aHO6/5lzHF24S8beI1nVfyMAPBxyl5XcT
aL1dB1++AonwbX3zYt9MrNHYN/VhP4FWvkFipw1J9DC4detONiauzHbtVXAk
UDvbmtfX95LIPfMoXzhiYnYNnZdzbgT6bVHiwONFoo/eBgrbjJn4xwuBnTzu
BMocvSlxANxNbZzrF7ijwM+biuCxb8d7csD35T/ZH23KxHUhnYnO4E49HIvy
3iRa868bB1ow8c0riVot4FpDKw5v9yFRS0WVvMhuJra5FXk2zYNAu1Puhnge
IdHJrkm+zINMnHbL2V7Oi0CqckIPCwJINDxrETN/hIk36C9/2OdLoKuuhNhY
KPhyn0HkUSa+NxceGAh+4ZCrk0oYie7Rnl78CX61Y/onFdxdLDfhBPhL6Z/q
c35MbJY3w9sM7vEziL4MPuNk/GQogIn79UXMthwhkPyGExSBkySqmc+tDgxm
YiGuXyXsRwl06/43aaNIqNvTE44J4Uy8Tp4jvNWPQLUf6iZPxZKofkp9vB/c
z3qM7T14VZ+ieRv4RLYDr8pJWH9SW/oieBTTjbImjkQNniMmPeAaaiklGv4E
ivbchNPATdZM8q2NZOLaAP13V8F3eHJKXYwn0ZuwR7460Uw8krTFLCaAQC2v
bRNvnibRpqm8IUocE5coem/UCSJQV0HZ+wdnSCR5YjGqApxvja7cXnCflknZ
ZfDT1+JbXoE7veXQ8AffLv9snyEFXJxrv3Q8EycdeWCVD36uzs+vHvyom3ZU
Mfg2AYs4rmMEmhPgSq9OJlFJwJdjbeAZJer0zeCuB5EUCf6fUjfPMHi7tvgF
E/C/g3w5WlQSDdUK2gmeYuJHan+qIsF/3D27uxL8g+LdD8HgWjVjo6PgSeeX
i27QSOSDH6olgZ9cQUz/Ba9ZlEsaA7dnX6eUDX7J7Osf0WDYr4IJa7kUEgVW
ckpVs64v/y38H3hF4+4LV8HPc/WItoFr9rErBIJ3aXwTeweuKNbU0gP+eFpE
mwou8VmJLkInEXW3FO8YeDav6Z4H4CEKp+WywO2CmbDRTPyQ38XpNXho2UXb
XvAUU/X1c+D9XJFHZsHLw/Z6caeSaHPXT84l8Pbf58O4jxNIJrHIwwZc7d9k
9V/wjJHaBCXwZy8vWNHAr0xwc648zcR6LUPpZuDVfkpiHeAnE505V4M/yF59
2Q2839Sxny0N+rP75X2Wy3holEaDa3hujjEC93gcsZ7lnnKH72eDt7WfY48B
D4u05GHdP/FdelsVeGbA1YQa8B8DJo2s9cSntT5/An7hoOXILHjfhJ8Aa/2O
2otD4+ADlHQ1DQaJZMoahVjPy9ur9ZXtBIH2LYZ6BYIPSG7vZNXnuk/wT3Hw
lbcXEkrA503HpFj1FJ2uWL0NfOqWCH0UPKiwsY9V/5xvutLHwE+e2Obgkk6i
zsHP6qz9uu5yaksKOI/BVvGL4LROE13W/ma2PTYoAv9k8fzxS3CLqggzVj8s
h/sfeAuus+XjqHUGicr6Jn3NwbcHddMtQghEVz3GtS2TRDaXIsXUwHWytlz0
AJ/a6CoZCm7Hox7D6k/OO5nFseAZ5l9EKsCv8EgZsvrZ7oUbvgMeFfyhW45J
IjEPznYfcItimXnJUAL9m9NR4j5LoiZLwW8a8H7VZ2l7LoC/7k4rf3+ORHvF
OV3WgpfxC+ZtCCNQt0x0jEAWicgQ92vvYpmYe/PioBL4h95vW63BY64r1SaB
b+HsOuACftDC83g1eLSC7q+2GCZ+8ohq1QJ+4TRjiZ5NIl263jAX5ANNJEEz
NRxyz2DMX+sCiSqHB7Ux5NJKXq+VUhFQz7ZL5SE5JLrWdXPxFuThmkOjFRbR
BBpXFGqrzSeRyJJ7uDo4Pkrl8gRvYrg8nwS/fuBIVhXk6kDCFv848ALJxk7Z
AhKtSvZurIB8Fu1OlL8HntbedSwNvPul9L0cHyaee/jfZZkYqLO01K3DhSS6
IFdgounBxH9sE+i/wWfF7gz+uUai9Vl48JAD9Fuhgt+dOFiPaBS32g3Ipdro
P8ydkD+H6eqSCZCThqmtluUkuvFe+Ev2KiYWtJkqS6DCOlcUddyvIdHOWdeC
guBMvP9ljHYHg0AWtc9tGzCJlCRyeQbzM/D+q3yLmVkEUvd9mqPYRSIv39cB
0nXpeP1wbtVEDoFsuEomm3tItDZTXej+OQaWyo+ueFRAoK8brgUkvILfNT13
7tOuNBydU1pPK4Gcl9ek4jckiiOui2LTNJylqvSlALyzYL6xGzzb4LNdrlEa
3rO3TKQBXMjl8Ie34BnfF99Z66ThPIuayElw/1SBLyT4DYaNVbpUGq77Pam7
v5RAPX1iQopvSeRcUkm/PpeKe5P774rdJFAu3/keOvjs3pgq8fxUTOfLqqwo
I5C+gX698SCJqo9I06S+07HkupaKvgroZ32Dk+HvSGS8Spn9O0HHwQthf3+A
F22/RIsH737K6Kv7SMfzX1T2cVbC/NOgeYYKPvbRy9rqFR2Xvi+cNgbfrMOj
dwmcX9z6jmUjHV/+eU+nEnwTR2xqA/iB539CWlPouH7eryGlikB7d0n8WAKn
bmOvrZSl41diQk+M7hAoYH18QcAQidgPHDqzWRx+l6ki7gRu3ck1eAKceoUt
97IgHe/hMg0KBx/+3bccAU6543kjfh0d56+P4bkFrjHC+zcJPObbYUPZ7yn4
hQmPvchdAjln7ZjKAbfJ3+lA1Kbg4xGPhmbBP9JcGO3gV9YW7vPbnYJT2eNn
S6oJdLe+9s6a91CH4Fsxf81TcKdzV2gr+OPKG2/ZwZ0rzK3P7UzBE7ZC5CD4
l7kH37nAyyo2vbirlYI/CTWQ3PcJtCvcfZAPfLIhK+21cAou15GdDwOPRHGd
EuD87DtuVY3ScP6lY4uohkCl6zaOqoNHDehskHlPw/t+jUQ5gTtzRz/TBN8Z
2yCUMUDD40vOv0LBN/qsLtYGX9oVzuv9mIa7PtotXQcvW312ox644I+cyulK
GvbZ5rXMVUsgS/4kzh3g2cfZNfaW0rBt/mScAssLZByMwMMfrbG/WUjDUqXR
f3aC7ztNpO8E91oqT3bMpuGTVy7/DQE/pfm51Zj1XEEV53OjaXhpwz+2N+D7
3dsNzcFTCs9pj4fSsOTpvMQZ8LyTVz6znFK+NkwtiIaVMo1XctURaH7oSqIF
eKXF5Q81bjRMnmWs2gmO8wSiLMEH+ho5Fg/RcDVFj3IIXOcXvZ/lHvqBb/T2
07CLyOjqEPDbxYrSu8D3ht20CbOh4a97ziWngusXTh5geR4lwqPCjAbnoPna
YvCuH28iWO4Q9FJ0fAcNN19apDaBe6dPUlgepNIUIaZHw6tuV617Db4uXvE0
yz8360XaatCwhp9/yjT4/Sa6L8ufKCPxU0o0bNaqwMFZD+/LPgF9lnMGDniV
y9KwUeMYfRO4unbHAmv9d5OWbd+I0bC0ww1OI/BfvlcKWa6iO8+jzE3DOcFa
60+AV7S0NbLqs/z80ZjtWhrWnFxi0MHPT/CqslzTRNntxD8qruJ8xF0ETnOn
Ull1brlxybByhoq9VY5uGABPMZ1YYQaeekq5kHuAiq/NPeTf0QDz2KsETgT+
0ENA2CWPiuOqV4uxNxKoUVXAWwdcqIgjNv4iFa/K9haTBbf6IJunxap/rGzu
VSYVb13qENsO7rdO6qEG6z7f73O8TqLiTOdM8SBwt6YPQ6rgPIMhlepHqVg7
0FSyF1y1LlFhE3hAry5PiAYVK3fLyl56QCCTL7abeMBNt/7YbNqcjAcYnSpK
zbAvBv96++E9ldAVnhKvTcbxJidVTcDNmx/cfAH+9alnKFmVjJ/FKW5xBq+t
P3r8GbhXo0vZ5cJk7E/LUmOAHxCktnaAtxWODPdSkjFjkq45DX7ccSzhLvh/
jB2ePTbJ+MzClF4dJpCchGJQKnjGG5mmjf0UrMVRaGHVCv1/tnNOFXzWUODj
6mcUHHzZ9ag3uL/l2Dt5cI/PgodmOiiYX1Gcfgr8LV9GuSS4s4SlSVs1BWep
FHZXg++eTOLcAF497b7WPJuCw0Z67WXbYM6smqmbhpzk3R1i/8iOgm9vxF5L
4F3Bo8NV4CkPOX91PzuDRVMHkso7CFTyQthBEtzqjUjoq8YkXFo285S3i0AK
Sh2j1XAu/NfZ/HVVQQKuybVU9e2BPsnz3yg/APWcHh7JdorDC0rZ3036CcS2
4oDBeC+J/HycFVBkJB63aztT9o5AvKlTx+49IdEW4cPvvL1DseAZVTHyE5z7
6c+z/dtJxMZzYVFa0h9f7y2R7PgM80znmI9CA4kK3L43zhu54I1ftb/JTBHI
fva7v/5tuH55l8dDWV5stlpafe0Cge4pjvrwF0P+f4tzyhNyRlzKoeFPl2Ef
lfncH8Dcctssk53dKgC51XTGSKyaQMZV/bEcMG8PDK616CsOR3pve9gWOCbQ
+oMTGc+jYH5jGCpenotFcU51Ji68E+g/HbZIdz84F644nr9UnYjkerpiC4Qm
kJyVTvv6Q/B/KrP+ufKXZJTLew0FS06g09bnScIU5oTszaWBy3R0e45Z/WjT
BApeej7xSp1ED+5+GpjlSUWaxCTPGPhMvWtCFPjtdVo/4mRTUY7gHn82+QnE
MRTBJgFecoAxkGOZipSUBKUMwH/vsq/1UiNRe4xuxgIzFRmqPKWVgY80l//7
oQp99XN/juHmNKSR+8olXWECtSmNLK1UJtG3+/ek5uwY6JDywbX2iuCTDpdF
NsE5lT/v/saXgbjqRDyPg//+m6lQLwd1bnlKx1EMVHZmuDEN/HGYw0Un8FNF
Wy9eyGOgohcRIR3gm5PTtHJl4bkWFi8d/cpAqVbdQ7pKE2jU8oKxmAzMtz27
9c8npSPFa/zVIsoT6Lil+uONkpCrki9Wlp5PRxH/ODbogq9MMuquliBRfNHX
+02l6agqZ3XAfnBVmcEae3BTu8H+mZ509J6ySiYV3IjSaHpWnETcO8qX48Qz
kLqeEuM3+JFvUrpcYiTy3tnHVaKegZ7GGEwIq0ygG4Y54TdFYT6MzFj1yiQD
7V+2Nd0KHv+j4PIu8PC01nI9vwwkVpOwGAT+Ndax4IwIiXSOGrgFxWagwz/y
7OngiQ7sp2TB90RbLBZnZCC6d0vldfDKLAszLAz52Toe87EwAxVsHOdoAz+h
wzvtCk41FiOk7oOv5vb9AN6l60dZEiLR/wCNMiSz
"]],
Line3DBox[CompressedData["
1:eJwV13k8VF0YB3AiKYSKUmhBSraUsnajSGWJUiMUkiwRyr6NGWSZGRNFKksJ
iYQoS/UUel9LEZXI+ooptODaKvI+M39+P/M599xznvs759nodMHq7CIeHp7l
vDw8fDzcH3VAe8W6511XBh5Pfh0CHS2Jwb0m4wTPX5WG1rbZ55VPHlA2Dg+B
QLTVv11cV16uavxWEIyWOE6aoZf2t1/3P4i+LVSV2rQGzslRpfLQc+vKBAoP
jRPUv0WN0jVb4INF1lqbERyHeCUiaTZOZC1/ccT9oRZYB7nOVo/i/+e1GjiW
44TY4BO6aLwJDC1fsynsxxDY3/GYCrYdJ7TcVsyfIihgtn9S5Ts5BEVx85u8
vMYJ6fabR0puuoLJjaXPzywMwZZ3uTJXUsaJFcbGdeVtPvBDasa5eCkHlH/t
teytGicOBYxfvzLuD3Eje21cV3IgcahZ0bZnnHgho/PGTjkUfL7Y3YyR4UDn
WuPoWN4J4ptk/t2e01SwPGu9KmkzB0RfZJ+S2zRBrHV58FOgmAZl17NMx9Q4
YPmKv0dz/wRR+c5Q9mhjFATrztqUanFAY9OO/U7OE4SX1z9b/qTFwI8N46ZB
eznAvOa71CBygrihv+9Jk0ssSG1RKgg24cC2rc+Kj2ROEO1bXXJSv8fBf+eG
eJgWHFDbbdmqWTVBBK+KD391IAFGF12wWHecA/nOcuIh7yaIc0k/LRenMEDm
kIrFazsONNcvVS/8PkHEW3cUSOQxwXVJnXWOE3ecgk9T/CTBkh54BHdZoCjH
w2S6cmCV2eKCCWmSeCKkqjXumwirs0UOjXhygM+A/Km9gyTcKBUJEQJsEDBY
Vhjjy4HtA4a+vcYkodRzv13FiA2HCuCPVAAHbhfviPt5kiQEwjPc15xnw9eR
vF+zwRzoP1PcRz1PEj1hVa6p6EsyDb8IhnDgwyXPhEZ0H8vLfBKebBAUz3iz
Bv2+peSmVZ4k0Xxxh6iwFxuKVFOjtNB/e20Ty0M/lfMhfPgCG+KPJN0MQN+i
deZnkxdJdFQbgONFNtBUCz0n0Wv5l1aJ+5CExuOKugNBbAg66nXnaygHxmNU
qEw/krih8pNyA72udsO9GfTlq5zj3qM/D2yPG0UfG0/OFQjjgIhnTNg6f5LQ
j3/yMi6YDd8vP2XKoxfTWJvz0cVv1MaVh7Ah4IbkYgd0ul5hSG0ASazw5Atp
DGPDa5sfqR/QXUdkNCaDSCK4f+PAMJUNoQbK5tXhuO9qn1qMwrnvVW0vGonj
9OsoNaBb932ZiUXXte6g7UDvVjVbaEfPEL8r9Bq9z+9GQwD6cGfo1Qn02DnF
acsIkmisMjg4hi7oJuixNYIDdaP2H+2oJOH7cUJMiMYGW/pO0d3ovYV9dpno
K/o20+TRpcycC/ejS46JNv+HrvdwteNR9I8/mltPo/fNhVx0iSSJXUelxW+j
n/B4W38N/aMardGLRhK3/x2UL0Hn412rmY3ezxv4oBh9saL6AKCvNT53oxh9
yXHp0An08lwLm0702F7hI03oRVHe3X50klj0r9zKQfT+7WezOtBVT2/weoJu
0hbs/x09e+fL4SH0N9Xho7PoT/NLtOfQ3U2izvFQOXDmj3F+SBRJjPhdSeOl
s8HLZvSmCLptb/HwU/QVKpN3FqP3SB1vWIvus69B4i/69pZOa0H0iri6n4ro
OUpsFSKaJA7aGZYuRZ+/t0tUE30mefF2KvrJ9yoVXH8QUKhoiO4SsXXDS3Sn
3bfOccdpmFLQtkCf/PbnN28MSThHM19wn2shl73PDj2zO/SlIbr9c95a7jwN
eOQPuKG7mhdepKNbDMx6cd8rnXFvnz+6hWG8eB26zrhv3RT62Xp1bTr6sQrJ
m/yXSWK25acHd900zU1F09ErlHR9otHXXhF+wN2XrqSH596ic7aUbo2JJYkW
4XU53H1k37BU7kF/psKv8A962MVCYzZ6seXM8DB6SRm/sEAcSdTwUmLc0Lc3
mx3hi+QAaSKeHo0+vrFthltXWjyKDZrovfGUJno8SbhPzeiOYx0a0TnWhujZ
WbLytehdj7K2fkB/Xp7fZY4eo5XsuiiBJPLGg3nT0Me26LadQ8/7cbmMiv7Z
2ypbDN3GJN4jDd38UiYllIHPDWM+hAg26Ht0mv9B3z0U03qBRRIpUUGtSehV
7n9uCtA4sH7sSnU+eo390QZn9K1Lln4WR59Z8SP5M3rR5bc6i9G7Jb+c2oIe
mJUmeiKRJN5VjslrhbMh40qRiDX6i0/PNPTZJGGVWi/hEop1O+l+4AG642ud
LQJJJCG/u91tIIANvy+kbbOhY85kC7yNv0YS11mhB9noT0XUHp9BHyrcGVWD
nlQhtqCH7m1SrOOF3vjm0ebf6GujFn1L8se6uuq3nY5+9kTOLrcUkgj8JfRG
3Q/zLVaovRC9L86aZpxKEq72jwt2+rLhao/zn7/oHI+R+vnrJCG7zK3LzoMN
1vpvHmdEccBAnrPi9C2SmFuXZN/lzobDrh6W+ej+1GTxNPS4V5RICrqh4ODg
I3SdSwF/2tAL+p4/MHdjw6485+l69PObPrON00lCQv1HmtI5Nqg6ZtdOoIel
HaxRziCJEINOyHJig/MrySVG0Rw4MmFFTGXi+27+zyCGwoZB8w/bB9GrzE/c
8c8mibFfT2R37WWDtkuJpMhlDmSVbhbWvU8SRvxPgjwIrDcZNysJdEldKuU8
esY5o+zMPWx4Nz10WQZ9cqwqKR3dRlvMiV+fDeIr1PpV0IcG371dQJ8TPMUC
bTaEfP1rZI5+43vyxdoCfC7l0+05DTbwS1zjMNGtaKZHDzwgicRq67Ir8mz4
fP5miGAsB+YrMkMMikkiP+HEZUV+NgysFpsaQdezbb6wUE4SsWEGeWGeiXDD
fuHBqXgOyIo76Vx4QRJZDg0flt5igSZF50Z0AgfasoVvxjTifl3ftfv+dRZ4
Kt0Uj0NXKNDvzEf/+vLzHpNrLLCc6qAx0LftvLb4DbrwyPzeMBYLpPxGrZLR
LZuebFnZhO/F2i7WRGXBQ+nz+VnogsubrmegO2xL+TTlzIJJoW61KvQNQ1s3
lL4mCdOiY+tjt7Fg0N3/zlf06c76pqZmklgl88KkR5EFNCt/61H0qtWNzd/Q
b4R5rFGXZ8FrjaOLfqBv/zgOIi0k8Xol7X6zNAscerIPkujaXWXnLdCbrxal
/RRhQeKnLNY8etmM4Fgr+qlh/rsvfjJhsd/SCTEG5hVtOP3dWxy/O9c1s4QJ
J5Suye5A1+lNSGlow7qNz9h77AET6Hccd2miy0gtjI+ge0s+sxbIZ0JU8azx
bnT3l8Fawu9IgtbktdspiwkCrBgrXXSDkwkx5ujH8u52zLKYsMxi48p96MOF
4opt6MUKJ5NuezBBfNhKxxJ9bXtp0If3JEHR/zbQv4kJa8JyN7ii82kdOPu6
HfOhDk7ryzLhx8NXlm7oihvqN46iv1eqkkqVYkJa4MMQd/RyP8uGpR9JgpEs
Z2QoxgSvpoHK8+iibmGdxuh32+uDAuYZsDagvs8bvdpb5y+gJ8nZn7T/yAAv
TmJrAPoU30Gbog6SeJuakc9sY0CaPyUxEL2y5sg/TegDIwK7qt+g3xo1CkL/
+sNBdhjdRcVUYHkdA9bc90kPRqcn3kiU6ySJzfL5UUnFDFjdNDcVil4y7uuf
in6qo3BWMo4BKxREzajoY9oV1iGfSGLTkK+HRhQDNpVopnC9V0t8LAV9j8vE
zsMRDMhMcevgetuHnf6l6DGvZF5f8mPAf56/DkSiNw13GQ2jF2U3pEV7MyDv
tLUf1986nE7k7yIJ9WnV58keDOi6//wm17v8HtStR987qyB0z5EBCWaV77jO
G5w/YY3elvdkR5EdAwRzDg1xXcbtxKg3elXTokclJxhAWg//5Dox3dKSgP77
zJK4UisGHHa4RnLdZePKrFz0q96vyovNGCBeZz7G9eSRDXYv0WPH9bQLTRiw
P1KCw/V/LH/xdaN3cDxX5uxjwFDq8HuuLxy/lTqNTj1C2X9zDwMmlzQ95br+
76WrxbvRVeeaWNoM8GmtTOd6pK4hbRt6B9XmfsROBthOlgdwvXGtUacROuuA
d5+nGgMeecMhrq+9vkLaAZ1Ho9HMUIEBhX6/u7jr3HBe5OxV9DUharpNYgyo
LRYriED3DKfxz6HreVNacoUYsC4zwIzrQ2afKiV6cH06daoiBBjQzxn9Go7u
VD13Ug39n6XKV7fOJUA5bW4Z1z29bzs4oQv0AsX+SwJEjj77E4Jeb+ge9C/6
b7+yO3IDCXAgJ9GF656LVjP70ffTnPZ96U6A4AqvRm69rXFgMX6hD8yMxLq0
JcDW0WNh3PoMn+o239aL5+aJB/JGzxKgMPJloj86O/ZXPxN9ljOTQUtKgP0X
1527gP7KQl3Xoo8kzA/ezfirkwAVrm19tuhBTlf/rekniXvOmYktmgnwpS46
+iT6ZdPWtx/RA9eMqGWoJ8C7lyoKNuiTMUH139CvH/QK37k5AXrTba2Oo49+
E6JL/offY+v2o0biCVDbq+p8BP1ImJaCG/pcYE7XDCceWuiPznJzY/xhsYzQ
AOabPOGaxY6HoZOa/fLc+rGT6TP4TBL1Y7reC91xsFx/3aMPmHuUd1+yg4cw
r7Zk06E9DtL9X6W2oQuPjhUx0IWX8/eGvo2DlNGjfi3orwXNcjLQt3wuPfez
Ng5eXpZZ14Due/zv0Rr0H2V1zY/uxwF/3Bnxp+hWOkaVghySKJuuGK0MiAOt
h1X3uPnvLu+cfQVdmvzsUC0aBzbx12jO6GORnKnkL5hvLfu0knfHQlTI/EA7
nlMUp/nkk8N4r24t27hueyxU6a451ob+d35nmgt6N6W2IEspFur38MIbdDEr
V4YvOv+vitt3ZWLBQ2QPrQ49SK5GLx59T5iABJsvFlpeOz0vQbf1MHxVge5w
TUlqqvkyLH9PEUlAP53o57diBOfDn5o6c+YyuPDPLNZG99iSa1WBLt3D49kb
EwOXv/1xpMVxIClDnad5lCRKD+TKTkTEQIgv9Wwo+vH59FMf0DMoabF8QTFw
eKX4GX/0qKmqgm50V0/X6PUeMRCWc9zUHV22lG/FKDrH6f4mPYsY2CZ88aMl
uond2+VLvmFfFvZsdMnqGCgeGGtZjx5w6XiDLvpv7w0Vw3ejgVLGc+gJ99wv
kzC8jj6dE3yxLD0anl0TTCxG19/r75+Obhi56UtoSjTMX5FuzkfPOxuTdge9
Q8l2RiA2GkS7XHVuoVeGlhcUon896F294B4NYQ+Tmqjo77vMeV6gZzzZ2kZX
j4ZIx21vTdA/23u5f0Z3sOzUbq+Mgq0j3k7v8d7i7uNgKPMdz9NbDTllJVHg
dLvP6DX6vnk51gZ0gdeXnNj5UZAnZLqpDn3rnahXcuiBH/+8IdKiwOqXzD+P
0DfslpnZin4n67VneGAUqGvnViahP2YWnNVE15kLfBu8KwpEDpscsUAP/67n
bYLOjl9toqoaBX80kmqN0Xcta/M7hC427y3WpxAFU2861fagzxH850zRC1nH
krUkokBIxolURi+ZJoSPoO907nVsIunwfP2JzcvQa9mrnI5zx1l17LTbKB0E
s1iOvOijfkl1J9A33Yt6wP+ZDnbvaq/NxuD8Lz1YYYPeHiqpt6ONDopHFYc5
6GXVVT626PEdcxu9i+lg9KRNtxY9OkBD9zT6dP7BnNk8Ogy3zOypQpdWSPvN
dfZpy6DwTDpcv7lWtwT95eitHAf04wFXVtJYdFhjaiObib6zLuS5I3psZ0Pn
QjSOo+63OAWdr/24shP61/XPxoLD6PBPPWuIgd7P0xLN9dBDHhTyEh2KVuY+
p6M37h9s5LqezXsxt/N0uC1ezQ5Gr72d8ofr6qazUt1n6JBZ88bWh/v/1ZzV
Z7jzkft40dSWDvmbe9e7ovfmtq3nenGvt2yVFa6n/rfuU+g8FnYrua4X/kpK
4RAdepfMJlmjbxejT3DHn+b9cJZpQIdl0byGpugXRoyfcb3fLXMRqUUHg3LB
EUP0pz15F7luynFWfaxIh1ZVMQV19HBRg2zuOjT/Pv1s5Xo6KAWKVWxGnzQL
kuZ6OCmR7iVJh8RLy/fLoAfmmEdy1/PSlVJz6cV0CIrhO7AM/X7mWxHu+ldE
FAWfGKDBx+Vts5+xXyh/sV2Du49UhZIp01s0KC3hEU5Bdy93vWeBrmQpkCp5
lQbOFO0OBvoFpenfZuhecSsHehJocFaAkkFHlwuq0+XWYcf6435nQ2hgHnhg
jQ/61Wy5WG49Kw2GsCknaVDz6EfNYfR05W+H96LfbzyY1ryaBhpxp8gF7HdM
RXMjlLn7Ivpz8hc7EjSKal+cQZdd/Sx1hvud+p9+bxZKhfL+bBEp7MuY6oHx
FPS/061hdb5U+L6bOC+CPuvY9dUSPXROxVXLjQo600W1vOgfWWc0DqPLptxZ
WH2cCqvuCdmPYL859mkgRh99li9c+7EaFRr6K7Wr0dl66ZobuXmS/Kekpy4C
1HOHb9iiRyvw3h/E3NP6a8C6nRAOM9SUuRTslw1Y0T9s0fWkv0GRYCh4+Cvo
z0ZwgL+ayhHCHC77a2sqIxMAzD0G/90Nxf5a9+VsBZ4vX5uUTnUs+IAcJU6K
NwjzsPLdfjs8H9Ujvk4073UFxWW+xbcvcWDzYYNGZ7yfOOTbM9TtbCDdfLhv
szfWv/2RY/c/4D5Guajp94oRtx12d3e7cyDjlqGy9BvM7enJpw+s7YjP8htI
nbMcqEjTonrVksTTrUSzQbgHsdjY1PraaQ78V+71j2El9t0L9qa5pn5E/0F1
ZUEb7Gt8GhLmCvGcJWrWFN0LJX7tMnCiW3HgRF+Ms20WSYwXF4i0rqIRAj/h
0/PDHIhXY/7px/7d5LW59OEjMYTWs96lf/ZxoGb496IldMz/E4xyNfd44lOV
d8FxPQ686S7WlbiI996Hxj/fh8YTvG0WD3agN5WepzX5Yo5pakqEJcYTxTHM
PDH0zNHp0kj0wcYihfayeOJuvXx0oy7ec6L9W7/7YN+9fpVNwUI8MVBUM6iP
Lm63if+VN0ls8MpbOnAtgXjK/1RTTgfPEbby3gteJLEva+wKtY5BDHy4K/t1
N95XpYRWPnLDHKhWt6J/ZBBk+gnlOnTPQ8nJLujh/Dl/Y0cYRDyfm0YW+nDP
8LwU+taNStLpYkzCIi9PkYLuqLKITXXF/KTnun21YxLqllcf/7sL70Veffmm
50jC/cc5c6FpJmGuus0lR5MDyoGmZf3OeO6PjrTqLWUR75r//UVFV2yvak1C
V5G8Y+AjzSJ6hWuj7dBnU2Y69qNTpguHBgxZBMPxQ8xKdCmD7rv3zuA51b9z
73Aii9jj6aYSuZMDNrutNC444T3WzEZBI5tFzP36TbdDXyjYkbEBnTZcMh32
mEUYyo+27UYPon8mWx3xey9YsJftYRHOll9sfuzgwM+TRXY70a+0TpK+Yyxi
7zHySgP68MmGC0MO2GcpyPo38iUS2ZP2NXfRK5+Vnk9BV74XMii/OpFgaiiO
RqCforsfPYB+iyJC0JQSiQURC2Fb9I6CMbnZ0yTxP9eJ+Vw=
"]],
Line3DBox[CompressedData["
1:eJwd1Hk8Vdv7B3B1CBGZzqHMU3EKzTKcJVOKJCoVIWXMmELGk0hlJvE1pQyZ
kjnEfnSLXMlFcitzVyURlX3Oicpv+e3Xa//zfj2vZz9rrc/aCs6+1i6rubi4
avFL4fr/py3Vnq6fbWHftFaNgx69qrcws6wBLq6411IefIwM4wO1WZs56HSo
h+mhAys+kVrUSGMcKvlUr479tb/ysLXxipsoCZ9QZUzVaL8+uImD9M2rhhx1
sOdPWQpk7GC8HaCHxalw0NRDOfoVVexO+zuLjHYx7qsXPt6IXb5nHU+cAvZx
4zGtZ7sZWjMvKRXKHETXpYSmS2M3kP4ouW8vw69mV2W3Egc1ruLWrRDFLs96
fUlfh7HpUcD609j32gnHNK5bmcf37NN1uozMTWdDZxU5KIGieL6dDzvzWuKq
Gl3GMwr3XDj22kXd2X7KSr2+rZa6HqPc/Ph5IewPDE4LTPypxnOmth4O1GOY
L5+cz1PgoKDXMe1zP1f82hPH23qMYlnhCE3sEk31G5cXVlzqrNNNPcbj0kvi
bfIcFP1lZp3wPHYu83tHrPUYN/MTaq2wd3jRc+S+YGdujNzxVZchTrG1m5Dj
oHd6/h1aH1fq437yOOgyTvT1CVzA3mZHxBtOrNSbPg9r2ssQrh66libLQdzX
fGbd/sVukLpBoUibEfWX5xFl7GdS+mJD+7HLhws0nNvDeIjKletlOCjliy6R
9BL7uEZHteNOxt5wgw+D0hzkFq+63PQUexs/Y+LGZgYvT0vPho0cNBdp0ydR
tfLdRGJHvhLD4uLgaPkGDhpb9c1co3xlzoKFnhZphsXhe2w97Hf70533F684
Uzo9jaUfYmZp5CjFQdlO5NnQnJU+wkZTrpuJ1P1sw0IaB3lpCD6avo49WbP1
zb/7iarghP80xTkoIiUz7+MZ7MO5RCDLmSgu7io9tI6D7C9tCbARxx6mLL68
9hwxnsOTNijIQalzehE0YeyZbkwuVRdCQS74miP2L2SlwTA/dj+lXB9fN6Lh
OSXeX4CDlooffXFbrgKuc/6f2Ie9CI3SepHb/Bx0J8vuXew0do1ax7GCAML2
wVXeCR4OYj2flZpuw6641TE2mknEN3fmRPxho/c6uoraPlXAZOR8MHJOIaKn
WN5v5tjImkJWLqQ/BCYZfHS0JoWQvNSaex67Tvynr1fjsRcJ2G3lTiUOOHsN
/vnKRh3huT7iV7HPWGt+LkklIh2uOqtgH8yy2brXD7uMx8K/i2kEYzT9w4UZ
NiJapu6nHMTOVzef0nab4F2yyBD+jP1OQ0rEciXe/2fVQa9yiPZSSunh92wU
/H58j5lnJTD1PqrHxBURP4ZSY6YH2OjdKd+eLKMHwEzqLpz7p5Yw0xjcIfSY
jbzvL+lbrS+HqlOmO8ts24h1laol2XfYSHDHHCz/VQK9u4wSp/9+Tszo/OOf
dI2NIskOA7fqYtCyf8pPNPQSAXLmU3xebGRCcfasuVEImSEBdab6g8QW1+bc
PGs22vEoNTAu6h74tbVpmW4YJjhKbaPBumx07kV1lmNNPuQEmtxdyJ0g2iq2
RS0pslHzNtEn03dzIecYp0Ty8Afi6L3J4GpBNhp+KaWhbZYFC91VvV3Gn4mE
D+P6Z9gsVLLH5ClHJQPOKRby7/s+SxQvy6OhcRYSXNs70zydBud4eCczj30j
fvHbPnDrZqGerv0L54RTgBXnUPqUukBwnOvU3zWw0Lu+o9YtJvEQMJZ8Mu03
i2hOE6IducdCpqtfiMVNXAOjzJYXAWM/iRxTD6IxiYXePLSxNFKPgi4uVsFv
rd9E6xVBUbUwFrJV55bh6wyB60GfBsX0uIDbp2gh2JOFaGWjslJRF+AoAw1O
b1wNQqYZgbO2LGTg9j8reug5WAzr/xUlyA1xZO3Jk6Ys1Bl0/ILWXVOQHYx7
n/idB05lHP4RtZuFMjetWZdYZI6MVTpiHTbwgWzo0vwPFRaa9PuVoaN+FpFL
ZeEfd66F9pfaLiI0FtJ1ZGSkW3mjW8oDrY2nBIHyrb2Zws9C3a1nZ2m8AWig
b0/dg+dC8Mv41GnHRRK5b4lL8qEFod32B4+KpKyHy86RV0xnSTQp5VgXiUKQ
8i95HdFJEXhy5m1fzRiJSuy5tgz+DEN5DUsbkvXF4HPoVMmffhLVFbz+/u5H
BGI5So9WGYoB7UmBby/2mSw+2emfEUiWV9Sqf78YWJX+YdzDHtzdlDO3HIFG
LcMMaNa4j3Ma2wR75ujtWyMCkUj2mYVNqasYVIVo9yb0kWiY0PUxUYpEFSYj
Bl+TxCBBz19OrpdEt3y1/ja2ikSLhS26S+/FIIk/d5fZSxJVpLTLrC6IRMcH
LlYpxIlDaeeIQd1zEll6/ZP/WIKJiu1vwXiyOATIqQVFY7dy+6ezjsZEES8P
5+TfFofxpsxHR7E79KQZlEgxUad7FqF4TxxymyaPkx24/7iHXIQME3XFRBRr
NYlD2aSm8B7sHAnzrA/KTHTtZBQl4JM4rP+c6tryjETWTyeiC7Yz0ahb8PcU
YwngL4+r6nlCIkk1p61DB5jIepVEvedBCVgT6EjPx/69aPaQrDkTWV49ZGJs
JQGF0bZV/tiHExFhZ8FE7w1Se37aSUCHV90bcezvCrUS2y2ZKPieZ7RPgARk
uysU2LWRKGpi/5ejNkxkv3w8POKeBKQJdcp+IUiUn3swy9mOibjkZQu1V1Gh
UsysWqQFn7v83Rd73Zjo43vu3vY1VFBcHLnw6TGJtk85P2zFTj1DfWgjSIUb
Bgf1W7Hr8Grl6bkzkWFS0zV/GhW0Zotm3LFHWMzk0D2Y6GsNV079VioMtXvU
tzWTqPfHjGyPJxMJWumfMdtBhcnymtbb2DnB/Hbq55nIp6Tw7ZA2Fca/9fV4
YR8/tu3eFexr4378x21MhYe5aQJS2EepBUcUvJgolZbq4HiKCg8uKs35N5Go
rF5ol4o3E00mKreyHalgfkqOYYa9ihPz90nsEU8mepJd8Dx3vqXLYg9M4/O4
gT36xLBAux8VBg5KOb1oxOvt1fz7Lfb5Fqk9ToFU0Kvy6b+LffOFgRuL2IuH
r0j8CqVCxqWsQ8HYR89HH6P64O8e6v+yK5YKyvKXHFSwB7quEULYve40//cq
ngq2PMoLS49IZO/2ZtEcO6PiZeKFVCqEHSxN7cf+B+q/22A/elFgViSTCrfm
uHVKV+r98sjj2KvYAX+qc6mQt7B7OhJ7YHAq5dhK/W7ep9YFVMg+iQqOY7d4
kyJtudJfq11noYQKcbKyLluxjyblGBhi9/vwwOV2JRW8jV5pcmNXv1Pjuw37
1LEnRnvrqLCv04Ey1ID3Yc1A6UbsxVeWB4abqMD3oG2sGjvnGdccF/Yyd3ep
K0CFv75xnl3HHjykjSbw/tx0b378oosKQtkzpbuxVwi/4ErDnqPp6OoxQQWK
9/hIaj2J3t8K4nu8co67fiSLfqKC4xGSyxN7lMhyUTD2Xla1T8sMzmf6+JZ9
K/UfUiy3YZcuf2gkysH5ZOjcmasjUX/627Y0nBPuoXKbDiEanBdanLXAHiH6
TU0G503jcTrtkjgN7L4/sVXGvvrQK7lanM/842WJyhtowNjt1LVUSyK9sTZ5
Y+z2YHM7RoUGwyNyXWXYp9YSRrY453In7gtY6dEgqKJ8Bz920UgDIUNXJpou
PpK4xpMGavvJyufVJEp951KvdoaJNsoeLizwpYGX7qRvPvZk1zqhi05MtOtq
iOu+SzSQOHpk72XsFTfjCpscmUiZZjcXwaRBzveiD+rYtbNfxex2YKIxFyOx
1Rk0CJvULkyswn1GumTZp3De8qoKNj+jwZVsnibbhyTy+XSsLA3fd4XI3x9Z
spJw77jOvvkKEjULj27S2cdEbhwndsagJBisEunWKSFRcU1Di54QEzlL5VNH
hyXhaxA9WhT718NVmVsEmSj3ShaXyn+S8GDYxHT6Pl5v4j9vqGuZaHzTk531
c5Jg7xcy9T/sf2YiYt7xMNH/XryWGeOTAmbb+8KfxSRiehoq6C9Goue+0j9O
6ErBGKXqd3MRibaMfRra/joSCdLlyibzpWCJqq9pUkCieWrhjbqoSHTIe/GA
vc8GKPVRSA3KI9HOtomO9S0RSExEz0KftRFE9hvwzaSTSJwe4+3RF4b++J2v
jy6XAfe+vO8mCSTqNpa8yLMuBOld4w2/eVgO1LpiTDpicG6lIiXb+wJR8gOZ
MtVQeWh1E+hgReA51f0crQQCUGOgUn6aqwJMXv9YoxGM8xw7Us570wt1uuZs
FDFTBLODt7i9LpCIL7b96/OTzig41E613lAJci4LV3Z7kUjeVDuuv2I/Cjnj
/UoJKYPWCQPNKTcSGdg8MuvvsIQQ/wpzCy0V2E+bNPl0Ft/rKoabR7ELEEYt
Lku6qlBsVOe7xYlEIZ0jmx6KBQBpM59Xr7sJUMLjH0anV/4Pn+ebvULB57SL
4ojuZohZ5nr74xTOG/eynfLGKBhtyyt+b6sGq4JEqgVO4vONSlFa2hULDrPQ
LWqvBs9eL/7Fg/2p3h3P2gOx4Fjka27kpAZS9/NHlk+QiAHUTL/TsTD5KMS6
yF0NLt9V2LqA3UjGqPhndCysckOx3pfVYD3J2TmCvVE/Jcl0IBbCZ6PihLLV
II/2+1MVdsX1lNsvAq7D9ezvf1JH1UDnoN2QA3bJJb0LUQ03YDL0YkqRqzr4
ufiyB2xJFPOZ373gYDyoOvConD+vDnrKkX/3Yh+nHNnG4xwPv7PmVbf5qcOe
Tv/ibuwU4zYJ78vx4KA8eIm4rA6tsMx8hj1pF03rcEk8kJdG0Gi8OqzxJhrr
sBeNFJfZr0mAcPGR6O216hDX1rE9A7uM4aFHOU8T4Asjv38rFx3OmVOOnMM+
Y9egUW2YBJ4BYdtW8dBhU5Vv5BnsQRqrTw+eSoKQ1bV/BvjpsGGRaHTA3qwa
WLwqIAmstDQnw8XokKy/xuIk9sTrgzc9C5LgVdfZoQFVOjRG7SEtsRdfb+k2
XJ0M25ZaQzIO0WGJR8VaD3tEtqLb/Nlk6HmDwN+aDo9bQUMH+8uaG//u8EuG
X+ulL1jY0qHslD5VG/vv4ehjIWHJsC7lP0XKGTrQjCd4dmJf8tgTsj49GXh7
K6suXaSD5usXbluwR7kmuJ7pSIbtURR3m8t08GoIz1bHPiiebtTanwxfE2sS
tkXQ4W2Y6LvN2HkHtTSkx5JBulFOeS6WDoZNk0Eq2IVSlLf8x06GpIGRWz3x
dGBoKv6rhP3DzTBkzp0CaeasgMoUOnjeNNyniD03w92pYX0KqMt4PEm8TYeO
LpMGeey7Hk0lKsukgNWB3eG+2XQ4Mk/fLYe99POvrnS1FPg/1zxjlg==
"]],
Line3DBox[CompressedData["
1:eJwd1Xk4VesXB/BjzJHpnGTKkJAxc6bKi0glots1NIgMGYq4FTIUUeYcx3QR
JXMyJbnIkjgy1CUUKboUSmU826nQ7+23n2f/8/njfdez9netLXva/4gHO4lE
6scvB+n/z0Ob3oLHOYdO/MOrzIKxtaLD+21qgUS2LPlzd2RLpvmBB9lKLNi0
olP2/QB2nlF9RSNai3Xp9EMV7GNceV73LGqhVWHuMbvenZaZWoOhg4os2OXO
LS60pxZcApJWh3bUtIwMqoYlKLCAQ17JZEy1Ft4LctHjpZ603LOy9xXYxoJX
VVUlSeRaGO6j9f5Y7WvZwNX8QmILCyJZL0YNOmrgtvCPjrGm9y3Fxd1l1vws
YFrbDLfuqQF5e6OWubfzLdEzxLnhuRWw3LmNEiFVDXfK0ddCU1bL0mhqzOfB
FbCd17q1Q70SdruGCj/4td6yX/2VjkDTClDEnSePGlRARc6p/JhxduCv3F6a
k78CLg8oFNnt5aCRO0sPf8IFX4z+Dbh5fQWKbbkl881L4bFXhtzGTB74S8Zq
hufsCpQ2Z80ePlAM6i6V0vuFN4KaZ+OtvCMrsGv5mOW8RyH0oOind+T4gSXX
Oha8awXiheOrVKoLQDOze9BORBBaK7Sifm5bgbMlJPOOydswu5DBnmknBEcL
PgTX8K1AYd/Vmt7recAwGrP4siQESR/f73FdIaB2va8t3z8HNIptM0hXKVD8
aysafU/ArLdzq4dWFrjQzGXG3lNglexw/0wvATZcQ0+0LdIhi61R1GiCAgc8
PXWFsDeKdXOAQTqc9+Asp09SQGH5YUdDDwH7u7S2W6ulAzuPWC6aokBc4eYN
vNhb2Jz4/DelQ2mDUf3lWQpwOb7mvN9FgHwft3PXf2mw2nmuLZxJgR6y+5dl
BgHDE+MiwxFpAHnxRo82UOFmVoFv4hNc5/iNsZONdGhWyy9bkacC63Sdypt6
AooNqjp49VOhPawiuV6BCtrKOv9ex97+abuBpWoq8Jj1yf21nQpTPPRwHewn
dpaGxMikgpnaceePilR4LEysJD4kYCmn03sDTyrEXokQrlShgoLzATeTOlx/
ccj61hEa2Mj+jO7ToML4I3nhshoCXtWWfy8PpUGvXe8lJwNcz/XKscgKAtiL
TPQl2lLgyIFS5xfYg8NsQQO7XNFsfEp9CmyqzyZMDKkQmDBQ9u4eAQ3o9n2e
eylwYK5NT8aICkPMsFxD7Nbm213W6SkQ/X4rHhIq2K+eYC2UESCeUBTyyyMF
9FuoV1KNqWDaZxfvXkKAumBAhCNvCoSS7b0msLuf5CJvwp51zjfm9dpNWO2q
YtNEVGDjzKY9KSbg2cKGCrbpm1BVXmzejr38lmerNPblrMsDLv/chI+f72zs
N6HCI/aktJFCAuJP70s46HwTkj1f3Ao1o0IjXUDUrgDXPxGU11OaDLeel9ff
xU4YsZVwYVd7e9eglp4M0rwPe7uwb8tMQI13CPCU2MfKiUiGQI4/5gX3UsHK
70y8HPZtHl+ng48mg/dK3eZo7OOZu24Q+QQwdDpjHUnJwM5LEsvFfmtq9vg9
7I5/FNk4ziYB32KwaO3vcz7rGLpgr3z03fD4qyS4YLbMP4w9WCiBvzuPgEIb
rkifiiR4WU5wzmBf0c7mvILdPLL57aXMJLgzs/07E7snrymnLvZS1qeT16OS
gP5BaGSjORWEh/+UyruF8/+wpK/SMQnqC7rbN2E/+uKp3h/YfX7qt3XuTYKD
erX3xbFHh3Q58mB/G2M8MqmeBLb5nXQp7IUjntce5xJA/bNpM4dEEjDe8QbJ
YH/4Lac+ELuAd2WQAlcSVC6EOvzfG7wWFbF3PxH9dXA+EXhGJXb+PqdY/7ne
uxwCDp5auffXaCK8/Hta8Pe9sb5d11Kxp5haR+QzEkFAfWKait3p6MkRS+xZ
XuKXXtQkQmMm72Ne7FsWY/XXsgk4PXicTrqVCCOvXG6SsD83P5RXi305WvjV
zthE8B7KUJ3C/WEjZ8dIYT9RN9NT5pwIwwNKZn9jv893pGkpiwCXQ5Ihjzbi
ez8BKRL7gt0u5zLsh8aE2thXEqB+ILrZE7vCoWbyKeysulBNu4kEOKacpaqG
3flUzOXuTAJyNevCVxoSYGHow3Qezg+FTffpnQzcH9fqEW/PBDiuKzIiZ0qF
GC2OBbs0AvKKhzI/PomH4tvxPrM4t887zkjxYG+LVjdwux8PpyfUvldj5xJ0
P9JCx9+3ZG1tMise1Kd+8Otht2iVe6WCvaVp/fs3/3gQnmverITngpwH5pyp
BIhJJT5QkY4Hae6RW/d2UyF3n3dLw00CgtsH1AxD4+DwFw9fK+xivram3tgl
tT7Za3nEwe7zR0dn8PxGGP7xQhz729RrujsOx4GlnX2BJHaBwXvcockE3N5p
yaspFwdqwV97z+D9oE0qm9+TRIAZi7z1dE8syDt5pyXupEKG7kBZRzwB6wHh
y0GSsTByJvOLoBoV2vmnq9/GELBPX9LU58l1sGrofbJGwfstko+qHEaACtnQ
21skGrTJhf+IYNdiae/+LxTvYQm+w/Xs0dB9YfzODiG8lzoV/f/G/t7BwY97
7hoI5Ebt/VOACsfOh82RsSc72TtVd16DKZXLPQm8VOia7XeaDSFg8CLxXiXk
GgwdUP+Wzk4F6bgdQ1VBOOdUqG98GwUVieUR0gsUyD9Z4on+IsBkJCDMojgS
9m5f6iE9owCnX9FysA8BD82b3gtcj4DwwSDPnCMUENiXeemrAwEh7f/p7I+5
AFYMgfjKf4QggfnAyWkfnusAx5RVO0/42bDTx5ksBMcyDy9F6eF+rrRq7Kzf
B0UVk4FcVgIgHfpzfkmBgMQ30reYc/ZoxzJ3cvYJPuh4buBBESWg/7aVQUGB
DyKNuLft0+cFjoWORg4yniNXmUXf4xdQMHnObzV7A6yaHzt56gcTbC/d6d+T
FIqyeAJ6fac5IeT0lch9X5lADnTl+e/LVVTKP9U1XMUGT1xH+mvHmSA2dZLU
LRmNquOkHdqCV1s+hc6Urr9kQl20eLomxw2klJuePB7FbCl79s6krpMJIYsT
+w9di0O31bz7OLs+t1Ru2l9DaWaC8/r5ghOkRESSq/+mKTXUomzJrOysYcKJ
jyl0P6lk1NqqMzPv22VswkbpNSplwlOBYGrm2k3U98H2/NDgJ+MyP9nUoDwm
HLKa3KM8nYL2r4sYnL1BGFMsTXi+pDMhImZJKLGIhtJKM64ffEpCXv15ixZJ
TFBLpJTIOqSiPkp//0sVbqTcHWPBiGFC9bf3u6b+S0XV/44IiTRsRI/PbGQQ
EUy4UGTam2ZLR2+V1BqVOSjoQ+xUrXowE0o+5LIbV9CRiPUn21gRYbT/YBrn
2UAmGI6RMmWn6WhbbmGfgrwwUuHRNjuKvS+vWGYGu0HR340dWsKowFo2fjd2
R6P77RUzdBT1UfM5n7UwsvNfNuDHbsL+zk3zMx3dlhb++uiaMLrPf45aFcDE
+4tBbP1KR98C74tGLQijE/UldcvnmTinT/1KFuno5V1VsakXm1HuI7P6G/5M
kNzuWnJglY6MdKXH+95uRvJeFOMA7IT5tuYB7HURB4VaPm9Gpre1+o5hbzM2
/3p8jY4YprY1+dwiyKjEc5M6ds2n5YWe63R09qrQtyvGIkhN6O7mIT8meAiy
e3mQ0lD7uNuRukoRxG3jQVbArvtwxISHMw093m7P+JIiinJDBCt7zzLBXW/H
rklyGkqfVguayBNFM2FdE4+wa11UuaTBm4byPs+EvqkQRdV5F2XvYl/wJI2H
YDd9JBTZ/0wUPdhT2ByC3cZNz4i8MQ01+8hcHiWJoaufjvkoYg+GbhEqXxqK
NzJUPBUghoxYO+5G+zIhnivdq5c/DTlJu4tcviKGdk+Sg85jz/hLKvIn9mPm
F5wyk8RQ45fXR0/89rSITiWBNPTB3nx0uEwMKR0/qK6LPXCu+104drWMu8+D
JsRQT1Gs4wcfJmTzJGpSBdPQpQTW8aJ5MVQazQztw75P4M0jbexf27SNh9bF
EFvU0bJm7FMM0jk77OdZ9uu7togj+eEZ2XTsbHbDLnHYS8OdzykcFUfaiz7x
+7CXPKvym8TuG/0u2+O0OPrc7rWmjX3J46k7E/vJ56aSpefFkXS942UZ7Nr1
VbFcQmmoX6FRQjdJHBFLAqksbyYk+VOPbcVuu/NFZniOOMo1GVL7iL10OHaD
KvZf1zu9usrE0eN7Sf392BuWX0/oYP8oUZwk2iCOnHYaXG3B3vT016wR9sV5
b24vhjg6/27Q4B72WguSnAl2DfKmgcZBccRR6PYzE3ve5ZEbe7HfdbuzJDgp
jihxHzqjsYedTpCwwG5M2ux1ZkEc5SQ65AVgt13bPGqOnXf8nOaTX+Iov7I5
whm7qFVIlxl2TlLFISkBCbR1bpO3FfaXVg8/Gv++1+3f5lBJCbTF5uRJA+yR
v7o0DLFT5juykKEEij7DcKP+rv9KuLUS9i7xvzmLLCXQouzUxV9e+HsdkpSV
wl4dY9fOZy+BRn+s0L5g7+ihbxPCTpUPRJOBEkiGZ3GagT1/kq9qHvefHBoo
X1EhgfxT0MYw7G2XFL/lYN9d768h3ySBGoznz3pj//ImQTMK+y2dI8l5XRIo
dCN92B77xsVntz2xzy0zLLOnJNBFUtVzLezyhs95VbD30fzL7m/dgjQdTTRm
zjCBobLOmYNz2HtvUN9YfQsqEF2VeI09YPNQyEXs83xPe/t2bUETvqcEGdjF
X/E42WDPKNzFu2q/BQ28lKQWYncfuW7/O/+JyrkDPklbkH924BUX7OPTb63N
sC/ESdwu+7EF0YXiv7/xZIKv/MKOaDx3PYV8WyteSaKkLC/fVx5MeL+l8cFr
7jQkczf7SvgHSbS4IHKWgd2coXrhCvbsmZqPtouSSOH92Yv12Ev2/chTwP5t
f1jHGr8UWr0sWJCB3aPrvs45Ljzvp64O+FtIIbdyDTcH7M9e+Tl94khDpyYs
lB/WSSGZ+dHoN+5MkKM4ZaTj/VNuxmhqT5NGlqIfLKbdmKDH+WLoMYuOxFO9
qrgLpVFGKZfEa+wpd5LFFLH/+aCa0+qBNM71URYD+8cpj4jkFbzPfbUH3/RL
o6sFQQPF2KO8HR84EHQ0W/WTW1RQBpXvGeE4gz3axrptYImO5pKLmtjiZVDf
XW7rT6eZUJl56ULgNzqi2t3T7DPZitw0eCOZrnifbO9UPjhBR80CoofZdsui
4r11/mou+L+j5zJ8up2O2Jklcp1ScgglNS3tPckE416dqOxgOlr4N4Ghza2A
Yn6RRpaOMUHgh2aq6GY6aljgoCupKCK2IErNRicm8Pje1JpMTEWumUteB7QV
UfvQjzYu7LHyhUpV8alokJVl7mukiMRLbr/75ciE8Pq910NiU9GmOU7+2oOK
KOSO7I5l7O1uchfJ0amIp8x1wspXEQkxWbrvsHdPusuKhKailiPq+dUViihP
dG26GntNyPyDCa9UdDZc2NVYUwkZHTw+6ox9flX5yf69qahVQ5jb10gZnffw
Xxl0YIKK6/aw/Us0VKzYRjD2KqPd8le6+rAPCzAuu8zTkHfzzR3y1spI/1lA
cS/2URfl0EtfaSikOe7cxCll9Bh+XW3HPr5gFJk7TUOtIt/1/GKUEfe5loY6
7DOdcQV9ozTEo9sx19anjBJaGdqZ2Im9rwxHntLQccqm7y5eKsjdisPOHfuG
MJUm31Qa8iysu/8xQAUpVvtfccV+os54ce9NGrIcvFjqG6qCJH60NDhj56GJ
qEok0lAWr8P50GQVlLKH+5ATdmd9SkFrDK6/P+1AeZ0KaojSZ9pgJxtoFzGD
aai5c03Wgk0V/eRSOLL79/lkORLpFA05Kv1tMMaripoeg7oRdq4bAX80HKeh
5wpH04OFVVH5sT0iBtg5y66V+jnSkMmKkmyNoioSNf+PSxc7x5tFhyE7Gvpz
2TpKy0YVaQz1nFHDvj632hNvTkONu6a6Bh1U0dn68BwV7EdSvHbomNLQskye
Q4irKhoJo75Rwr46mJkysoeGVlrOWjAuqCKzfz4EKWA/bGV6Yqs+7nPItSK/
CFVkrLHttRx2VlhTe6sODZ3u/8dKLFYV+cSbmW773ecj39VPadLQWIegwVOa
KmJ0W9RvxX7g+Y/sn2o0pO4Q4+Ofo4rs5lX1ZLAvzQJPhjIN/Q/hhOYV
"]],
Line3DBox[CompressedData["
1:eJwd13k8Vc8bB3AiEi2WIvuWbNkiKnlkjRYSWRKyZM++RLi2e+1uEm0IhZKo
JBUmRAmlCMm3RVz3ouIekYTf+J0/3695zWvOc858Zh4p1wArjzUsLCysrCws
bCz/fy6FTArrOXJqro9VWKOvI9WwVyN7GrHQ3m4zrP6jJydu+ypgxxr9zgrD
0h+rLiWc//TuOnjhbXX/9PY1+rpdevMV1GlEsuay/lsuBKSid2wmUmv0m2jZ
pyVyptFzsS2qJYXyMJvEvLN52xp9bZ8C4L40jb46tW7hyNCBdu0m1nvr1uhz
VHpIfbk6jVz2+C4OnDkI4vtj3q2js+pvFaiMjiibRpFXv74nidrB1fYrC3rl
rPpLiVzpPo3TSOi6/83tkV5QDF0PecVY9UfEhR7x/ZxG5lbqAkP1QVDA3zj1
vZBFPzaW66Ks8AyS1AjMkOoJh9nwbTUft7Po79wuKchnNIMSrr0PEmQ7D39q
CoV5D63ALyVubYnAGVQ/qfSr2ZQEAgtPrsmfXga3rDjO0fwZJO5cUO2QmwBX
843s2ryXoP3itzhy8ww6W/c21qEyCUZW1mjzxfyDiKM2/pP0GaQpzvtLNJIM
/fVb3nTeWgSNg24MWx4mapPqJi8eSAHJ37dbXVr+wq2YD6yW6kw0MK/7bHd7
KtQdbntYTyxAfInKqUgrJprSevybRzwdrNiizP1VFsDzP4282iAmompVVBHe
GaAwVTRl7vQHfloneirnMNF40IN81nOZwGfDv7+8eB4yByX1pauZqE5CprQm
NAs8DtYM632aAwmx7VO83UzE/+JDtcyBbJDTdh+7Jj4HPuqPTvyjM1HVPvXp
po/ZAJyFkUqhv+HTU9eztawE6nsS1PCfIhWe1zIyDjXPwnJ4C0VAhEAf2iQM
rytRIaCZM+lZ0yyIpTECA7HfT7l63V6ZChvtiXdKDbOg/hGMu7Avacy97NlJ
BRGFXcEbHs/CbqWo6kRRAo1uM2G5r0aF0MM2L/ruzsLDwu1pM2IEoqsdnNfZ
TQXJGzLVIZdnIbrV1q5DkkBdiR+Wz+hTwSmaXsgMmAVgV7DzliPQukaB0H3H
qHCWlX98VmIWClzjxnzUCXReKeVAPfaWOaEcY7FZ4HHOG3yF3SLLpmqXFRUW
JrlK84Rnwa5G96GcBoF41Zed5Y5TQaD/7tyeLbOQckxbYgQ71yRZfdEaj6+Y
c09ePwtmWaPvbDUJ1KoWnuxqR4Vos6unVH8TcGRGvERPm0BubF3TO5yo4Bom
hd6+JsDtFP/PBV0CPVyKSY3Eru5J2bHzFQFxvwV6rffj8VOpz19iH7Mb/J3W
RkDEyK2iauxfyqq5XJ2pMLdv3wvT5wSwPgv75a5HIDOqxjqyCxVesayVb39E
QNiZbu83QKBxza116a5UkE2u4O6/QcDXMseO6wYEOtZm/SHTgwpNkaqGBhEE
vOj+u2vHQQKRdvfk3MdOd1wKrQ8lQKDlflAMdiNHr8Ve7FJv13GpBhPwsftj
fi/2rLaf3QJnqNBwatBWzJ+AFqWYgjgzAkltso4kY8+XcaAuuxLAzcqb1W9O
oEXZR1lF2NUjBfoiXPD671tuUj5EIN9fGpaPsQ868ETNnCLAL5L1XDx27pKk
vhHsVq9rp8bsCCg6UrdW+TCBDseSRhQ8qTB5jO7Xe5SAGF5/dtIRAr3TeXlM
B/vvrdktFocJEIrR6ujD/qNc0c8YO49PSFSXGQHyLAHhCkcJ9L3UtOQkdven
s5tfGhFQdlgr7T32JjXWJnfstx5f+GVkgOuwtWVazoJAqsEDSX7YZw381FqB
gPk5BNHY3/EN8Udif8Y2NPh8LwHCKxvzZSwJtCaYYzgau+Yef319HQIc5FyK
IrC/SrawiMX+9N/+9c+1CNjsIU3txC579JF/HHaLo4d36+8iYO8zG2+JYwTa
0qmtverMnZdfPFcjYFD+r2II9mv/+itjsJdck3p0QIWAyapNH9qxPx7J6YzC
fjqfztmqRECIeZ6nsBWBvGN888Kxq0j9aDBSICBwOXPEH3tNlwtPEPZ1e1T7
2uUI+NYxZ9yMPaMneKcP9unP946YyRLw8m7PBYHjeP+mFC+cxk7j81PokiJA
ulyk3RN7saDNxSPY/8kWcfaKEqA1wk7fYE0gRqVAlwD2nplxpzE+AnqDZHnt
bQgUaM1jwoZdfp31hM9mApw2U25UYs+8L+k7jb975t2lgekN2NsdhJaxU1KL
6tqxJxRxDS2tI6Ah0qa55ATe1zW/rdywC6iwnxNdYcKvufw/E7YEql56v90U
+6dax623/jFB8lhip64dgSJWukoVsNd0MLeo/GVCW8sXchb2V5KCxRP4P08q
GNh34DcTzk5N1qnbE8hniK3YEXvvj0Rpv0kmaNsf+xfugPNNAepY3KmwSd3z
ZN8AEyouW4ouOeL6X4jPf+9GBbmS7RsyPzDhUNJnvoOnCJQfuNWyFPvheTcB
k14mUO5NzuZgH8/RNj2AveWIi8yTN0x42ZQYLe+E88Tb9kgA3r8nK20NS9vw
et7cybFyJtBZlw1PLuL9bqRwIJ3ykAk2d/roJacJlBtktXH5JBWmVFf2UrOZ
QLbO19Q8QyAxmQM1dhZUyPHaIVxykAnhwYNm2wIIdMAnWrv/KBUMGRKf9U2Y
kN3QxuKBXTN57rQV9py2KxxfDZkQKHClqAZ78u7qGyZHqMB1gTdZApiQ+mMm
1zSQQANkxTbxQ3idIbw6pVpMEDb2cwoNIpDu54N3Mk2ocMHDKrxRmgm1qYl+
HSEEWuslO+ahSwVjlo/H9y/NwCsv3bDTkQS6PH5CjEWWCm82LuT4PJyB4NgB
HbN4At0TNTF/9DYb9kyX3X6xcwZ2XDLbRacSyMD2nvN3zWwoSBP03VQzDXvY
hKyZhQQ6yD9cdsMtC17ZX5Iv3TkNB5ooG5/fJVDag4WyHHw+Xn8acYQz5Be0
Xc99Zl6P86SBT7P4WAb8bb7yLC7xJ6SfsJS0bSXQ7uN88Zbs6aC7/5VL5c0f
0B6uFv+oi0AuQtXhe8pTgcLTJjbwZQoKJQwKJPsIlOL4ccvimhQIr4kb8tg6
BSdUqdHPhgiUVCIrlH2cDG85/mYXe0xCcLdhU/oXAvWLOln8piTB20w3vYmW
Ccj7L9FiZQSfXzvWWQ3FJQF4tm2B5xNw0Kwymfs7gZhnSisaIpJA5Yn5g9zG
Cbh9XfWmIPbPlKpj5zyTIL4d7TWon4Dwv0evqmLnObr54nuTJGClHE8tq5oA
yKH7OK3OM7mpl31tEvgVSYnlXp4Aigal4DH2If95U6+4RJwzdhJsARPwRyv4
oN0ogbxUXr2aD08EFkGFa4F+ExCVvzvtNPYK2bSCpLOJkB4pNvzZewLufLWt
9cFu8OCbQd6pRBC6FVjV6D4Bgor3m89jHzr25fyVfYnAc/N5ZpLDBEhcaXpe
hD2jROCexHwCuOzhNNY2mYDxcSPLb9jXpXmuVfJLgMfNKllq4hNgc3Cl1mqM
QP8mVDMW3RLg6N+fYt9EJqAqljvfDvsZtfOo42QCTG04bJ+zbQLMxZPcnbDf
87qh5HwoAQ60D7+fE8DzXHna7I19LktQ+KxiAphH2717yY3rGaubHIfd6cFz
C1F6PAzM1S+mLjDAgiNXrRx7mfWy2NPT8fB5lzhH9gcG5HDlCI1j7zcy1NK3
j8ff9RyXTS8DLnopeU1gT9rGs9BqGQ8bDYLrRd4xYEhNvfQHdqNABfILiAfH
hj3bKrsYsHsp/hOBndybU3dbLB7sf0vT3rUyQDVZx2YF+2igZCD7RxK8jXSq
ggcMELNa8OOjEai+otTCo4cEIy0Un801DAgxtg8RwM7SdudT60sSLI4f6f1W
xYCNJds9tmJnrzRaOFdHAtPWmnLybQYI5LNxC2N/rlxu/voiCfSaek4O3mCA
U2CfsyR29xSzLKF0ElC/fg27V8iAz1X5zVLYz78KiHVPIMHEf5n7kq8zoNT6
5UYZ7OJzpu6/A0lQ693UoXmZAUv/+fpuxy7MucNk8QgJKtrOzVzLZsDMl46d
CqvrdMhVijIigW5BqrVZJgNmb9MWVt0xUNNmbi8JWMJN4ufTGNC59UOVIvbQ
cZ4w2g4SCCu91D5BZgAxKNethF3joLGvgzgJAjnTmzmSGGCskqajjP2MX82t
TgESzI8uCtTHM8BbDqWvOp/1Udm93CS417pNwyeOAaeb29pXXWVFfPwWKwny
SkeFxGIYsHOlgLHqpE9Gw2LTcXAvybGjJ4oBXV9MZ1c9F+4HTwzHwfyZeMPk
SAboubXS/u+KiRfud8RBsPlxyt5wBiSlbm7+/zzXn+qE1MWBqOr73OkQBhRY
qSauut0lWy/V0jj4I7DsWx7EgLQmiZ2rLrDFQZKWHQds//p5nAMYYN79rWn1
fa1vZysYesfB3e7syh4f/L69Q1dW6zPY2BLFsIkD8/qA22leDCC95v2+Wk8j
+5PWaQZxIHTzX6DxGQZkugsLrPpX2cYbz0TiwDRO7FTjaQbIxt/YuQO7/CbD
wuHuWJgyjL5dZ8eAvY4kPWnsXap2ykLqsWDDUc731oQB3FezBvix8zz8zuYp
FgvLbLaVl4wYENP0pYAXu3Jjn1sNVyz0r6ndcMqAAS3Jaw5vWvUz4w0aIzGw
jT1M9ed+BrT/a3Bej/0w99ve3zkxQBfgH9+mxYAnGWs9Vv//G8XluWHEeSgN
QHL5Mgww1ByjjWKvX45xPVkTDXlcH8flWRnwo/jzywLsyjD83bogGihdqk+V
V+jA+CQ6chn7oPHnG2Zp0ZCe56yrvkSHcZLx+EXsDbe6u2Xdo+E1mFvqLtDh
B/eJB6nY2WvsiWLBaFAYP1TnMEMHUbnQQ6HYLX/K+T+OiQLXVJbo+m904PS9
mWqMfZg3T8TC5By0iqiOz7fQQUD7g9YgzrGa2XY39Y5w0I0sNidT8PjBiCNN
OG+NkpOPOj8Khwcd4koomQ7fJTJsarGziB68mVIcDpcSi2v/JNLhyClHszvY
BRw/UrvPhcNNtcct/iQ6vKxXm72EPVBO+aykYjiMBsh0Op+jgx2z4oQfdsnR
nD0TqWEwmbCS4eZLh58BA0e3YLdm8+DfaBIKmxfb+hgWuD65yjx2+NxhfyfS
m1cTBE93ZYTOCNNBnPz46Y2veB5ug10aVZ5Qzrj6ReT+OOy7WLXU8wnnRj7b
0zZzO/AbezyUbj8OhxW27l78gNdf2ruxQk0SddstJXzjGIfbdVrG6m/wuezw
aX/srlNoy2iEmmALDZIlKzk2t+F9/ZpHQfarL7LpSB2Zz6BBWuhkhc4zfB8u
XXtOJjwM9cm3Lfg40+CEx4N1ItUE0v/skD3w+jxyk+l00dLH81zwYw8swTlD
HH+xk34e7RmvRj1Agy+mt57twz6dF0JJWRuDgpYL2v2w2+2sd+LEnpEuV39I
Pwat3ZHXVaZHg4pkP6/CYnxeyJ9sXVcXg5DLXL30fho0+G5K67yB66yxQjpV
EotCw8P59+6lweMNehzSRfj/N7jSpQMkNKkY9pamSYM/FXoj6BruOzaViktL
JyCuej83HEhQrtstj3JxX6CLwu9oJKB7JgXv/ijRYOSw6DwJe53zrhgtwwS0
i3ll7VPsbjy1VQbYxbNkLh13T0AjRfNNeti1rzT2tl3E5y9ZZqa6LAF12hhF
HFOkwfYJHbbOHHwe0YrtGUqJ6J2SzPI1eRpIevf86sH3petul6ecdJLQbdKc
e9t2GqR+Slh5nYFzMunhpv1mSSiw8k5GIfaEvvH+VOyfr8t9E3NIQoKEYlQk
9ubzl/IOYq+vFcgej05CXB+zy1Sw8356/aYtnUC7SJsFr6EkFL0yYXRTFtfh
TYE0SiOQOZk8kGCajKh1tPxaGfy+F0dtq1IIFCUl9TXdLhl5VTuKXsW+N77v
oQ9281r+/HzvZCTZVniGhP2j2IY/O7DTn7NsfpyejLRMKYctsNPc7faUUPC+
C/u7c2tPMpq4xTg1J00DM0XboktkvP6jfsI29mRE6SbyvLEr5/z+E5FEoKns
kGBXbzIqKH7q5og9g8/LSwf71V9CksHnyKii8tmwBXZdcc3WP4kE+rBe7/zl
K2RUctqvV2d1/MDg3nPYR2tmtFmHyEjMJqWXDzvtnbXGuQQCzdMYulITZDQy
KLmGG/uLuxf/6WB/sI+Ub/iXjApziGE27DN8yg/+4PstxwHKkWxhCvpTbpo/
L0WDffHeXyKwl83MV9QrUlAeW0c4E7td6kZbbey05xwOo3spSPFS0pqf2F+I
bng6RyKQ6bPlBoOTFKTlcEd8HHv62FaDMOz+tPGzYb4UVJkpUD2KnSYs7amJ
XUUtIPxONAUJztdPjmC/8IkcQcThPuVybu+3dAqKysvv+7Y6zw7jkAfYSyTs
yCLXKei9b433qn9YdnQIwm7a9iTL9i4FSUawVa56wOk3ymrYL6U+mbrUQEEe
9dTLq/PbWVyZ+BmL70V+tjf6uyioSNVOY3U9F141XqzCvvHsxdvb/qOgnmH7
SBp24e598n7YD2T5r3P+QUFz6JIPAzvTkb9CEfuW7rGGsiUK4v/IzfVjdXyk
ET8jBvfFZTVy+8VTkEpVmfkcdnvLh5Ue2PU7qpeSnVPQj+G8r5tx/S+mtI6e
Ok+guM9RXJ8DUtCLgJua27Azgj2RCHZnvlEfHVIKuqAzpSmNPYvunvwxmkDL
H6gqszdS0AY/xb27sb8K8+u1xt7fdfwJZSQFZTqctj2DfV7wXoR5FIF6IuOG
xc+kohqbJ8M07EbRi1/Vcb8jH6lscD08FdFNfWYXsOcK6wT9jCCQVF7Ekggl
FW0NtKnfgP9zTeM3U3ewM3fSQ6UrUtFx1yEjbexuupxlMthVujU8D02kohNv
CgNzsJ9/UCkpEE6giQ5/+w0BaSj2BS+/N96PRY1Nu2dw/2VxtjmtKD4NLRfH
Badhf9i3LuYmdh7O1zc1c9PQWEh6xV3sfdb5t22xR235m+P5JA2Nz56/TGDX
o8Y/agwmkEjZB9tptnTU7PuSko5zoIZIu5yC+767eVGJmVfSUafy39LvcjRY
7x+UvtpvdtZGu861ZyD1f/3vNXFeXVHIlJX3IZDbd/87Yx8zUO4ZNo4g7Fau
7rsGvQlkwrHl08BUBnJq6950D7sgO0k+BTuHQsLcC75MtMNFt1wR5+HrhKS2
cS/8vUYGtrQ4ZaKs9fFj+AIFb/xaXt/yxPcK2aA50/lM9ECjoshRhQaHCN41
Yh4E+pv/oMNjfRYif3+oW4a9v0E1rNMd+0pFMlksC7WknKqZxn7214U357CP
36193GOYhc7WpImkqNKgLVtGs98N961Rpuwp1Cx0PfQwa7MazsPG6NeZrgR6
T1UTayzNQndemR7nVafB2rcNAfuwn7j2Rvx3XRYS5/0W7Yqdw9xgkY77d/tM
hWH//7KQbtwPS04NGqhGC7cZYh8MpeXfm85CYzddlhyw26n7s8244Py3tNNl
smWjuaYgUjX2TEt2+ULsryXjOnQEs9HZbskh9l006Bn8onEI++4xB0hQzEZH
evzXn8Qu+XpF5o8zgf4H72Sfng==
"]], Line3DBox[CompressedData["
1:eJwd13k8lN0XAHBLlpRoUfYsbYiKN3suQhKFQoRUb9YipLJkmyFZJxIi1avV
kiWVUs4okiWEKKGVYUjMI1Tkd/zmz+/n+TzPnXvuOfcc+cN+tkd5uLi4uLm5
uHi5/v8bcuqSNLjYJSsUrsTDFFz9Vlc9ZQy4Cq9XdeZMG7x4Yv7dez0PM0sz
2YWa94nVO20uC5LO429mHNbyMK2URr3KGegGqt8upYuTm9vnrqnL8zDlrv1H
NFPRt1i7WCRuIJyiptkhcR7myfbePu30MTA0lfSvDdYmxmfVFh4S5GE2Wl8Z
0ckeA7mYE3dr95mTh/xLPE6wuJl6twxNVW6PwTXRcIVGof1kukafrLjFzZR/
Kj7cUDUGT9WlGdHunsSE62tZlSQ3E27fYrSOjcG9817qNoX+BCrq1C5lczFv
aS/TEJIdh1gdITlr5inCRwl73ZPnYg4NSCycNR+Hi+nvjsiMhRJG7mlLUaM5
+MeXpPCdGocSlunfP/qRZOBL5qLXdn/Bsizz66XccVjXVLr8aFw0uQQFeUou
syCRa606+WocPJ63K5/IpZOrv7JpJ/1m4H5JmQk1Ng6Thc8WhnvHkoDmpGd+
GX9AK1VDoHUFB0DuQW+TRhyZkHuocPz+b7A/9YEmr8sB5km9x2WPzpPml6ni
Pt9+gZNm3lj4AQ4cLONbeUQkgcjplb2Ykv0FMlqrHrSFcOCQhAvvvgOJRNSB
X+nT7mnY6OyjapLNgXUftmVleycRZ7qpWXDqFOjcFlBeWcEB3RdOt5+5J5Ot
//WsjW+ahFUK32yr3nJAyutTZadGClHfvkP7kugkeL/ijjIa54CH53Zj/dcp
ZPmWOqE/7j/B9/2a9tCFFCw8pjaluJZBrp5SnNZ+MAEOizXtNBQo+LzlKU3c
kkG4NzxzlBObAKcDD+SatSgIz7++LBM9U16949SyCXhtFHNrgzYFjJoso5VW
DFJjqlHxWmQCFgczl9LQxXqrI5bsZpCPwt1Pw4QmYPT9mUwtHQqyr46Hje5h
kNVXHld8nKPA5Oi4+1VdCq57t4Qc28sgtY+YIY/ZFGz9j1vQexu+X5xOd3Nk
kLu9o+ufMilQfpDrNGxMQTs8EytH51Ueal9dRWE43iUZb6cgQVBoB78Tg0xc
8xuiVVLwhS/8Vhb6gfDu87fQM5fI21g9pKAxSyhuhwkFwX+cGJ0HGGRwUGx5
fwEFagkqi/8zpaBIr/vahAuD3MvacWhDBgXaFxPFbc0p+N3+pmXDIQbpGG5Y
9/c4BYdIo1GuFQUG3ML39qBr+v0eC/GhQDHvYfYYetxdYZ0g9INrWHLTnhQE
feLpMd6N3/E5aPcUXXDNdCl1BNfDeibCQq8qM7mte5hBis9MZ/5wpEBXqWq7
mjUFWyoKhu3Rd8UvveDnQEGEY0lrBPpd7Xc9/uj3XrNGf+yjYN8RXpM36AX5
UbV56A1DjR/G91BQzNvUG2hDwYTtypIp9P2nA0J+4/9cf5rV+8iWgoub7zot
PMIgaquCrp3F/RoN/HRFcC8Feue5yyTQGwb/2chtRIGZha6JI3pWAY+HJrqT
/MjJhfoU3KSJmvxGtwkqqDFGt4r7uiUZ4100kHjFAte15IlEixW6gHzmvuV4
nswUvXsvo2eXm7EPoreytBtl1SnYoLRDVM+OAi9vvj/u6J/E1q6+uYkCf44Z
bwK6Qfb5imPoj4Ka36moUrAr/XZPN7r4jnYFf/R9Aluny5QpeLDUK0fZnoLp
4190TqI/adh/VncD7oNHgnEIep/Io9kgdBboeD5fi/ucsaSlHr1ho43vKfQP
A10VFoq4n9c4RhK435U1JQnzz18iGn7tchRw0bSyPdHLut7aBaKLN+xKcJbF
/SK93Y/Qi48ym/zQD8XKCw9IUSDw9iuXwH583vfEmDd6wMnyCT8JCo6Y7BK2
R68flzNwQWf3L/1JX0FBU7H+ewq910fecx+6tVePsOgyCt4XvMw0xnMx5cYy
sEAPl/03MVuEglNRpQYX0PWevuBsQd8kW/DkvhCez8d3t6k5UeCh0N2iiF7m
6e1tKEhBidSjS2HoGbwPHVegz34biHjNR0Gyw9rOBnQhrarAcTwngwGrega5
KJg5sEbQ4wAFmodFq7PRV3yzd1wzxYHsjELtXGcKUq7ZLqChtz2d0yyf4MCx
l8yaYfRRR6cJT3T7uqMhJhwONDVv1dJxoeDZtifdm9Ef+Hupu3/nADlm3NKO
fr2+klmCeVEvtcfj3lcODL7vbxQ4SMFZTu34CTc8V7Vp32xaOWAeaTflfYgC
vw3L5M3QZSe3JC9t5sB0ee2bUvRXdAUlSfSq2AOMN40cOH5sKH0a/X5Jyouq
gwziXWeda1vHgRtHdn2IOUyB59ts+d+uGJeXLz7tr+KASWCw01XMS1vb0Ggd
rAPbKxvnggo5YLsqXLn5KAWrJR26uvczyFjEkVucOHxPgNJSKW9c/+eo17ex
TnoHlaX/NOaA5CnBX/4BFLiY79ythD7rqVqZY8iBzldJVRXo1isWnLy7i0F6
uKvMTQzQn/V4zaH3fNh776YFg4QqyuVc1OHAneQu/8RAjI+Sc1+SOYMYrBtU
1N3MgcRGwx03T1LgACIbZUwYpFfp3KNMGQ7Yl30WaDtFQWQHT7iWLoNEKHH/
yJseB46Gy6dVoZj3N8VnnBRwP4X6cznF42ApoDe6j4b1hPlSmNGcQmzPX6Kn
bByH23qycbkXMP6N9fv5NVPItImdqnHpGLjdjfHYlktBa3PhxxMeycR+JtLh
zpYxuBJhJnwoH/NGT/nussgkYuN3tq8y8ge8rS9ealiO9Sfgog3B+45ff4F0
XcYoxGzU3er8DOu8JVeQxtIEMns8V7cLvsOMdhMpq6HAPDk1aT/ep5c6vcTf
cn+HDnqar2QD5keapmrryjgStm1uSNNwBEpiLbLcm/GeElyk4CMaRz4rT50O
2zYC7KRlKYHoX0RMn/EKxRGVVucnz3VHoMVPwTcSvbtzaEB19hw5ZezvbLN1
BC6/kBjMQnc3neR3/3qOfKitEjutPAK6Be6NjegDNyRDjhafI593jDh/WzEC
OSHBe1RaKMg/fmHjddNzZED7wjYz9jCwJGhW79E3rtN6vsgnltQ285ivzxiG
HKd18uOtFPyXwDqv8W8sieO68PrWxWGo7/Y0mUbPHw4UcXSJJQp0Gtf61GHg
F+q0mUN3zpbbd2VPLGmLTPdVShqGoqDNKsJvMO8f178Q+ieWbLY+7qNJG4ay
qP6u9ei7x5z0g2diSLfZCOuE3zCkH7OWcETPNw9OvZEQQ76lrR/xMB8GSFLS
L0Bnz90Ro9NjiDmXoeys6TC0/6i+UYz+sLTc/tDZGBJR9XQ2dfswTHLFTN1H
n17gtkzML4b4bv5awzQYBu/NCQeeoqt58584ZBtDzNhfA9dsHQaBmgyZJnT9
Tak1SeL43Qfl+xYrDIN0Vel5FrpbStTanUtjsK4ucylcPQyKS39eZKMvYVua
8AjFEBmpjmVWMsOgs/xI/Hd0yZTTlcf/0El+HT2WIT4MaWtAg0LvzpBmKPXR
CUxmJa8WGYaZ0NORs+j8N262/ZNHJ12FafKuM2zInx3kXtKG331pk6icTSe7
Dhlrdf5ig2+qT7sIuiVt+xWZNDrJ6pCQ2DPFBsfFOglL0ZlNUzV/ounk+ZSx
0XYOG64VlxetQJfNzVPJPEwnJpvDFbcOsuHXfbUqCfTWi2FXzzjRScyHgMv3
+9nww1/wuSS60Lpsb3tbOsk1ZfSqf2XDIjHVQil0BfG7/ELGdOJqb/pKo48N
5UIOGjLoM2cyuz7q0MmC2R6/Bx/YYOzi3Drvridfz5VtoRP64Stftd6zYfJi
4V7Z+fULmUfQlOikJzZWsbKTDW9Kdzyb95e6gvY28nQi4p25iXSg31cVXo3e
xLeELi1BJ9KL2wVq3rBh+rLr9nnf7+O4sF+UTriPaxbubGGDqUf3wXk/4cPu
zxekE2bic+nWJjY8Er9+eN6X8VdL+HLRiaPPaUeHBjZYF5ftmndDvd4batM0
0iRod/hjHRtEVESk5v23EDk38oNGxI8e0PKsZcPPhIet8+vUDxpg3mbRyLbI
+Hfjz9nA1Xbn2Lzzh7TbuH2kET2nL6ZhTDaoz/aPzu/Dfgl+3ZVdNLKcOhwh
UMWG88K+DvOuvzc8uL6ZRmotFsekVbJBgNfoljR67iXyd30VjTzUfD9R9JAN
QVfqJufj0nmAb3VtDo285HJ2HylkgyTD4chK9PCWf6uPXqQRH4YCd3g+G/Lq
Nf/Ox72kd2ElbyKNDPYt9RS9wwbbQbeI5ejl9WvKtUJpxK/C+7JWHhsU3qb/
I4qu++nKswhHGil14buQksWGhGPR3oLomwWuqDLEaOTPib7ao7FsoKe6L5jA
c9us3xJVlhBNip6s3l3gxgbRSqexR+gND0s90mjRhLG0/XC4KxuMerxvzOdj
tNTfGf/QaDLTRpRsndmQuUDSeD5/1W52bN3gE01C000b/ziw4YG3ne4t9IDH
Zz6dsYgmCyR4/nXYw4bSREPZtPn60J8jUSAYTSwlyeAmAzYUrR+874neamkn
tZcWRfL56vXcpdlQ8jhsJS/6YvtY51L/SJIfIS0y2D0EI1aVFRNY92RL0xqM
PSMJx0U39um7Idi7qfjvEDqzTS/yjWskMfms0Xyhcwi0w+2VP6K/8nJ+PrAr
kizoetxq0DYEYf+Cej1680Df9bG1kWQyfOm1/+qH4Lvtb4EcdH2dtmze+xHk
KvOHx4WKIfB9tKJGH718dE25xtlwwrfIM2dRxhCM5n6I9sa6ndnmH2PEHUbk
nu7IDLAfgiFWqeTpJrz3nWr19yqeJumJCt8TBgbh07pbzyvqMI+kd1srrAgg
ha5qQV9pg0Bzui90rxrrXtYPbdp5T7K2pNXSYO0gfBa2ybzwmAJRq7Sh+I1O
5Fsk90DMOxYwn93fdb4E+8TNLEPfzhcGvjPfOoRSWfDMqPPs+psUDO4+0u07
4QTbButLbzuygF5C63fJpODYN+cj7LvecE+HVzBiMwsGj9u6zsVT0BF+z9+6
+SQoVRxp3i/KAh/z1kWjIRSM5OXd62WfhLqZU/t/ibCgOHgz5x7607QVeX4C
QfBQOSfjMnrHuxfVfujx7V5l1w2DINFYeuvHJSyolqNLjwdTUNH+2dvgfhCI
HqZGTgizYEOXN5NzBu/lToHtTlmnINRtds9DIRas62utHse+YqRfhSHldQY+
O0V+fcXHAta+ufw+7FsmD11+SmLPQHV9q0gkuqVx7aMc9Cd36Nc8884AJa8x
roWe6lJV5IQecKkp+VXvGbBKVm2/uwDXI2Nh1+mPdYajxFdtGwzd9r+WX+Jl
QX5NXWrTCdy3QknHi9tCwPH2SByDG/9v4YG6cl8KYlU6rtSsDIN+U2ND4b8D
EN7fv/Ik9mNPZXKF2Rph4F5auLBndgAMeeNvbEa/HPGZb4VNGIgdlY4qQD+W
YCL93QvzNLUjJSghDLhvLgqxROf+MFN/FH0/5bPQj+ssCJ1TunhpZgBkTofI
2uM8V3HjYJre8FkYaD/stevPAKzOu1ug7o79WI0Tj15NBNQxGjO0fg2ARUOX
/QfsP50KbKPGP0eAIs9HeWl0g60716ej8/HUxBXORcC9yilHbvRsoTefd6PL
R5wXz5SJBFsBnY7X0wOQOqEo9tyNAguJUkrTMRIauP6M+aIH1naevI19snbt
4aDPrZEQGxbW+GZqAOacToj7Yl89ujV/+tPHSGg98W1rNXriMfP4deinXNWY
X0YjwaLIZncpevSg5kAf9u0znSNS3xdHQf1fvfNp6PmrHZz3oHOOGvPL7IyC
X7zW693QR+NvGG3CuUA/3a9AbX8UVOp84bZDr/uxaQEL5wjXsPcXjT2ioOBR
cLwF+kJ4U5KLLh5w5B//mCgQT6y4qYXekLP/lTB60J89t4aqo2BtRtACSXRi
FzjGxjkox9Chxr4tCvIqxD4sRz9o/bY1G92FHEx6+SUK3hskhS9B71Q/lmGJ
XjPlwa1DRcErpZ7Rhei3ZrRMZnEua/Lyl7vHGw1+wTwb+dFfF2l3FaH7poey
166IhmZVLk1edCszX2tX9IchsQevrYmGfrO3i7nR1758V7wEPVciNUJmazSU
10SVzE0OwD7VMz+rcH6UD8i1uGIaDfq3+eTnvSfUUt4P3YRewFxtHw2ho26u
815ZaqexGl3Y+vHnG+7REHg5zZML389pTlNpwXn21Nu6oo2no0Gx4ArhmY9L
O79QBHrIiq41j85FQ4JcxNcF6F5wr1kNXVaYZWaSGQ0Fv7X2CaLfSU0I7sP5
2hOmlnfciQaazqsLi9ENra4IJaN3WksV/6mPBud+38BV6KfOHPw4gvP7zCa1
s2nd0eBiG7NKFl1sSEQxB/3lK6NJ1eFoWLkmMG4t+mKjn5a70LXW+wx5L6ZB
yc+OVk103tuue+/aYrwyXrYv2EODczalfw6jL9lVqPyvDea12bWKig4aPBlu
evwZ/Salzvt2NwVZUKUZ2k8DgxuOKj/Ra95vyY9G9+T0HjScpEFw9TOvhXjO
dW8f1dqM/okue79tFR3ElRdb/YO+adpnQYIVBXYud1xWHaDD9P3qojR0nQDK
k1jinNXT91zuCx1IfkrXGcyvxpffD+TtxLgv63qtwYkBttyjph7M36HxlCEH
E7wHk8Mm1/HEQrFuRgs/5vuedWxRQfQvIV3+0stiIbq8nb4FvaunWb5iOwXG
eUVuS9RjwfbVIf7z88+3anGJo/dpfJBdEhAL6SfajhpiPeltPVfcaYTf3acn
c5aD73/Bd6kV61Wgtty7PYSChWkiChI/z4HqyfLKUzx4L1xXt9mii/nCL2i5
kzse7P5uke5exALyofdLySYKYvydA54tj4eND6U7dBez4N2H6RAb9Lj3tWf/
WRcPr7ktvHPQiemqqXE1CrZd7dqusiseju07tuUw1vmTtq7Z6uh23FOJeunx
IMlqUZ7GeyHKXuxi2Ubsf+TWLmcpJYDB82UNVsuw/vOtNytSwrrdYPDDyy4R
bu059+SqBAvSZ94VJilS8L5OvULXMxGKImt0pSVZ8HHloVpl9FfVeu5LQhPh
rKlJVhb6VNZIdZ0CBQcKEv2rriVCaPyi8UtSLEjpFvbgRjexUzY1GkmEIe7H
i3JkWOBmGnwoUA7PJ6/dpze0JEi4lfK9RZ4FydXUSlsZfE9D5u/WS0mgvGLS
xkmBBaWeZX7fpbFOJo3/arubBKliVy/2o18/c7IwDr1V8Mvtjy1JwGyvKP+r
yAJ2G09blRQFVzurmFLSyZC0bZGb3joWyPqbv1aSpCA0Kp9XfVMynNkZ+7AJ
vchVwaxGAs/hhgKVXcbJsHFo+7DrehYsfDD3nyu62/Fh5VjPZBj/GvsjZgML
VHJqBNPEMX+FVHjuhCYDD1kMkkosGNtYuFQVfc2NiKqm5GToVe04VoIevS7j
78tVWD91hw5OXE+GqJK+aTNlFnyJi2lxQ5d77TEg+yAZRl+qHOlDF913mv57
JQX/A0G4JUk=
"]], Line3DBox[CompressedData["
1:eJwd13k8lF8XAPB5xlYkodCGEJKlDS04Q0JkCVkikSVLhcoSKkvIUvYZSyal
Itnyi5Cap6KkBaEi2UJEmMcykyzvnXf+/H7u5977nHvOmXu3nPK1dCeTSCQR
jETiInF+4W1/2xR1HJUzqjfa81HqrKWGHtksMUjFFUzdel7Q+8+/QNWGj/LB
Qd8E7JAvuZROvBSD38Nn+3St+CgsroSrn+2RS5Tmpz6Xh0jrhh1epnyUbM3L
lmzHJQZFQPvD8hMN+GA0ZfxMl4+yQXn2jq4rcgubuvF8A/icoeF+VomPQjbe
/avJF80TzzveHGEDd19e27lygZcSZD/CX319icFu3zqdre0B1s4K26TyeCm/
3qg/XahZYlTfFpRkpQZCKZfAyuZuHoqq45fnMjLLjJ6cNGuB4+FQa1Vbc3w7
D2Uxg8tMNHyZMfypOMFaMBpSwxWMFiO4KQU8d8+KdC4zzhx4yVPQFQen1h6s
PdvMReFR9SOLbCThjqO8o3dW34S1MTse5alwUaTPfXzSo0/Cu+i3OkIVUsDC
vMgzKYpMuW9slePmR8LDc1vjPMTS4Eh98M/Jfozi6P5P0yqLhPu0HNg0gaeD
SGjMK8Ico4h2X7s//JyER191uSvtRYWLJx64dlaRKFmy9OrmnyQcVHxaFVtp
cHVGNr1ZmUTRpK3EkngwXFl/wvPUmixYvd+jXNZ6GQ6MBjeu34rhb1hf7Ob1
s0EjWpH7sd4S/KlX25x1CMM1JVhfgnVzoDsp1lPZdBEsPCa4TU9huPPPBIco
5VtgSiiIJ5gugN6wzaP7VzF8ufkhyI3fgk2DyUqaJ/5BAMxZP8rGcK2DS9ET
obnAddSgLDVmHpzCrmgaVGA4ZSbbppGZCyn+qxulCv+Ceb5+skwThk9U4haY
Fh0G9ecuaQ6woXmbnGtDD4a3zub+nEO+vtD1JNHDhjWRH+w39mJ4h1f8n1Ft
OrDWyc2WfGfDl+cfdvkj155I9mgEOhQL03cqdLBhqrc9YVMfht/wtP7jcZAO
c9cDJ7Y0suHEJ64u/34M3yVbaapkTAfxoJqgvaVskLDuHhYbROPLf9g3HaND
+NHYxtEQNohyBb8yHsXwCxfvfDpnQ4e6lTbVtUFsGHu/iTsXeciZi7VrbOmQ
9yHILvEiGwyD1ytOIv/FNmQdsaPDqfNPHu48x4aboRvE035j+MGo+zwFx+nQ
qC2SfM2FDdbKB1I6x1A8T+wP6Heig2T7yTMmRmx4qcGadZ7A8Ljt72/7utOB
uaTnekKMDTKT9hH20xh+pL856CVyrTvqHyxF2dCkLZX3APkObbOeNR50MEqU
7DVawwavU2Z3p5Hb/npqU4g8V6uNrMnPhkSV3xY3ZjBchgdma07TQYe3UXfj
EgvOvBe3Zcxi+ODYGl028uiJM/Pr/rHg07vtKQJzKH+CHTfu8aRDgtSKE8Js
FijSH5baIh+95hx6D3mHwxZpfoIFLxsH0iaRF3tsGj3theKg3ZvLNcyCxK0m
fJJsDD975VlhKvJ7PhoPuH6y4GFbiaMXclOt9rla5PcHouy4+1jwwjYk4wny
M0Xndbi96TBUhD3j62LBx36Lx8Z/MVzRwjX0EnKne9eDxD6xIGpxOiVgHsU/
s7k0GXmORGrzxvcscHC4T8aRN8RW+t1HTutIad3SyILtSbgN/z8M77OduP0W
+cdtF9vUXrGgPHjPQzpyyX26gh3IV7y0adNksMBd9UbBCPJQXHBlH3Lsjtpl
Sh0LRGrN43YtYDj7j1XaCPLad0sth2tYULUxzCwMecZL0eIJ5LsO1H+yqmLB
USsRVgNyywOmVgRy79mrgU7/sWDQWSRKaBHDVR1IcdPIXdg7G73KWeCrH0bY
IVfaomLKGS+h3/U6oIQFU4vmh+4iN7jRdpsz/81vwV6RRSzwunEjdAx5xO3p
cM5+XlcK1iQVsKCT2JOxZwnDf9jemOpF/vR7ZkXuPRboqhqkXkY+XasSyolD
D5aa/4zOApb8Aw2hZQwvcd9DfYpcmEzKeZ/DAv3BmR+2yK9XPQFOPMkmblrd
mSyICyrxzEN+y1hGh3Muck+FLi+nsmBeylFxJ4mM62k9HuH6/3cxZ01jWXAh
uMziKEbG/4lHB/Whc0/SEdF2vcaC0KEjolnI27I+p3PyIfSjouqlCOSK1jV9
yAeTukI4eZXWsHd1QSgLXHbklfmSyXjkIfpMPsrDZ5KDDfx+LHhjqHookYuM
P/kyQy9A+T9x0VOUsENxS5dZi/OQ8X2++ttOIecKsrE7aMMChSU7R4yXjOfQ
VdI2IA/uU9uZYcWCczalCXrIZ19+4IlGdXdl9B59vxkLVNorb9cj59qo40Fx
o8NCG80z8SCqI+69uW/5yHiE2B/Roy50wPnvVJuosuCP5sqJxpVkfOXuMJku
ezr4LFMO7+NmAWmsZ7hakIxvLVi6bYHc8U+OQC7Ggv0a0yIs5FIVGxbrUT8p
1htwwZbnIMpPXl59NRkvTJSyKUD9x1N2Z9P7v3NgVDGKPUYuYu0YZYn6mOXz
r3GnJ+cgxfvnzQIhMm6ifLdJz4IOU5ZGDbVdc6BQmr+UJEzGjcgnVyXo08GM
56lyy+M5cIuwVTdbR8YvrJhaW4z65zh2vk6obA5ehzlp30ROn7yZ26SH6uvk
6nnz4jnYTZNX/IR80nlOlaRLB0WdsSufH8yBwbb5+6ZiZDyq2cfSFPXt5Vj1
st6cOdj/qlTPRJyM+3VP5fiq0yHfbFXRhpg5sHxrStJdT8ZPVrrua5elQ1PB
qxWiDnNgLOmaKLaZjCe7judu/psLCXGW3oJ8c2C9/PuXlxwZH5aXPUS9mQuu
3e+HzvrPQvaYXH7PDjIu9tN4zJQ7F7KsYlunfs1AJZ/H2+sHyLi+2T53N6Nb
kPhmTGndiRnwS3Tad/IQGR9xh4CAgBxYt6RdozQ0DRtqBg78OULGDeZfcK3x
zoaFvjM8z89OA7c5JdvWiozXiuW6mGplgVBAirkC1zRMi7h8+2ZLxotTfGdy
NbNAYLHoQQk2DQ7JXMbDyMk9ZO/xXVkgT2tP3kOahnd9o3enkQ/89lmM3JYF
NZidpP4iAdXzEfyr7ci4d4dhA1UsC2zKpSS9WQT0iPSV6yJP/SPfaTeVCW4X
Kspbxwgwb7c6fg+5tVKksOHdTOhKHtoi1EEAI2e9tK09Gef+fG7BKjcTah2x
7wVtBPy+pBHiglzCZFOTU2Ym1OxXUdD9TMDG7bRnPsgvPq4RPHczE9aqVAYH
NBNwk1du5iryKbMl9QshmUAZiyYNvUPz3/HRKkDO+7GUX8IyE3w/KuX3viDg
oFfFNibyWx3F9e+XaSC3LXLPwYcEdGlJBp0/Tsal/3JryM3TQEtfP7G1gIBY
wfhjIchXmHxRCpmhgej432TnBwTcW+wRi0ROChmkS47S4F8/3AnPJ0BVS18v