-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_yolo_calo2d_keras.py
257 lines (192 loc) · 6.44 KB
/
model_yolo_calo2d_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import tensorflow as tf
from tensorflow.keras import layers,models
import logging,sys
logger = logging.getLogger(__name__)
layer_counter = 0
def build_model(config_file):
global layer_counter
num_labels = len(config_file['data_handling']['classes'])
batch_size = config_file['training']['batch_size']
num_boxes = config_file['model_pars']['num_boxes']
inputs = layers.Input(shape=tuple(config_file['data_handling']['image_shape']))
logger.info('building model, input image: %s',inputs)
# Layer 1
outputs = FullLayer(inputs,32,(3,3),(2,2))
# Layer 2
outputs = FullLayer(outputs,64,(3,3),(2,2))
# Layer 3
outputs = PartialLayer(outputs,128,(3,3))
# Layer 4
outputs = PartialLayer(outputs,64,(1,1))
# Layer 5
outputs = FullLayer(outputs,128,(3,3),(2,2))
# Layer 6
outputs = PartialLayer(outputs,256,(3,3))
# Layer 7
outputs = PartialLayer(outputs,128,(1,1))
# Layer 8
outputs = FullLayer(outputs,256,(3,3),(2,2))
# Layer 9
outputs = PartialLayer(outputs,512,(3,3))
# Layer 10
outputs = PartialLayer(outputs,256,(1,1))
# Layer 11
outputs = PartialLayer(outputs,512,(3,3))
# Layer 12
outputs = PartialLayer(outputs,256,(1,1))
# Layer 13
outputs = FullLayer(outputs,512,(3,3),(2,2))
#outputs = MaxPool2D((2,2))(outputs)
connection = outputs
# Layer 14
outputs = PartialLayer(outputs,1024,(3,3))
# Layer 15
outputs = PartialLayer(outputs,512,(1,1))
# Layer 16
outputs = PartialLayer(outputs,1024,(3,3))
# Layer 17
outputs = PartialLayer(outputs,512,(1,1))
# Layer 18
outputs = PartialLayer(outputs,1024,(3,3))
# Layer 19
outputs = PartialLayer(outputs,1024,(3,3))
# Layer 20
outputs = PartialLayer(outputs,1024,(3,3))
# Layer 21
connection = PartialLayer(connection,64,(1,1))
outputs = layers.Concatenate(axis=1)([connection,outputs])
# Layer 22
outputs = PartialLayer(outputs,1024, (3,3))
grid_h = outputs.get_shape()[2].value
grid_w = outputs.get_shape()[3].value
logger.info('grid_h x grid_w = %s x %s ',grid_h,grid_w)
# make the object detection layer
layer_counter += 1
outputs = Conv2D(num_boxes * (4 + 1 + num_labels),
(1,1), strides=(1,1),
name='DetectionLayer_%s' % layer_counter,
kernel_initializer='lecun_normal')(outputs)
layer_counter += 1
outputs = layers.Reshape((grid_h, grid_w, 4 + 1 + num_labels),name='Reshape_%s'%layer_counter)(outputs)
model = models.Model(inputs,outputs)
return model,grid_h,grid_w
def add_summary(outputs,debug=True):
return outputs
tf.summary.histogram(outputs.name.replace(':','_'),outputs)
logger.info('layer %s: %s',layer_counter,outputs)
sys.stdout.flush()
sys.stderr.flush()
if debug:
pr = tf.print('layer ',layer_counter)
with tf.control_dependencies([pr]):
outputs = tf.identity(outputs)
return outputs
def FullLayer(inputs,filters,kernel_size=(3,3),pool_size=(2,2)):
outputs = Conv2D(filters,kernel_size)(inputs)
outputs = BatchNorm()(outputs)
outputs = LeakyReLU()(outputs)
outputs = MaxPool2D(pool_size)(outputs)
return outputs
def PartialLayer(inputs,filters,kernel_size=(3,3)):
outputs = Conv2D(filters,kernel_size)(inputs)
outputs = BatchNorm()(outputs)
outputs = LeakyReLU()(outputs)
return outputs
def BatchNorm(axis=-1,
momentum=0.99,
epsilon=0.001,
center=True,
scale=True,
beta_initializer='zeros',
gamma_initializer='ones',
moving_mean_initializer='zeros',
moving_variance_initializer='ones',
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=True,
trainable=True,
virtual_batch_size=None,
adjustment=None,
name='BatchNorm_{0:02d}'):
global layer_counter
layer_counter += 1
return layers.BatchNormalization(axis=axis,
momentum=momentum,
epsilon=epsilon,
center=center,
scale=scale,
beta_initializer=beta_initializer,
gamma_initializer=gamma_initializer,
moving_mean_initializer=moving_mean_initializer,
moving_variance_initializer=moving_variance_initializer,
beta_regularizer=beta_regularizer,
gamma_regularizer=gamma_regularizer,
beta_constraint=beta_constraint,
gamma_constraint=gamma_constraint,
renorm=renorm,
renorm_clipping=renorm_clipping,
renorm_momentum=renorm_momentum,
fused=fused,
trainable=trainable,
virtual_batch_size=virtual_batch_size,
adjustment=adjustment,
name=name.format(layer_counter))
def Conv2D(filters,
kernel_size=(3,3),
strides=(1, 1),
padding='same',
data_format='channels_first',
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
name='Conv2D_{0:02d}'):
global layer_counter
layer_counter += 1
return layers.Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
kernel_constraint=kernel_constraint,
bias_constraint=bias_constraint,
name=name.format(layer_counter))
def MaxPool2D(pool_size,
strides=None,
padding='same',
data_format='channels_first',
name='MaxPool2D_{0:02d}'):
global layer_counter
layer_counter += 1
if strides is None:
strides = pool_size
return layers.MaxPool2D(
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
name=name.format(layer_counter))
def LeakyReLU(alpha=0.1,name='LeakyRelu_{0:02d}'):
global layer_counter
layer_counter += 1
return layers.LeakyReLU(alpha=alpha,name=name.format(layer_counter))