-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
93 lines (72 loc) · 2.65 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Conv2DTranspose, Concatenate, \
Input
from tensorflow.keras.models import Model
from data_image import get_data
from metrics import dice_loss, dice_coef, mad
batch_size = 8
epochs = 100
lr = 1e-4
IMAGE_SIZE = 256
def conv_block(inputs, num_filters):
x = Conv2D(num_filters, 3, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(num_filters, 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def encoder_block(inputs, num_filters):
x = conv_block(inputs, num_filters)
p = MaxPool2D((2, 2))(x)
return x, p
def decoder_block(inputs, skip_features, num_filters):
x = Conv2DTranspose(num_filters, (2, 2), strides=2, padding='same')(inputs)
x = Concatenate()([x, skip_features])
x = conv_block(x, num_filters)
return x
def build_unet():
inputs = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3), name="input_image")
""" Encoder """
s1, p1 = encoder_block(inputs, 64)
s2, p2 = encoder_block(p1, 128)
s3, p3 = encoder_block(p2, 256)
s4, p4 = encoder_block(p3, 512)
b1 = conv_block(p4, 1024)
""" Decoder """
d1 = decoder_block(b1, s4, 512)
d2 = decoder_block(d1, s3, 256)
d3 = decoder_block(d2, s2, 128)
d4 = decoder_block(d3, s1, 64)
""" Output """
outputs = Conv2D(1, (1, 1), padding="same", activation="sigmoid")(d4)
return Model(inputs, outputs, name="U-Net")
def call_model():
model = build_unet()
csv_path = "/home/kiran_shahi/dissertation/log/unet.csv"
model_path = '/home/kiran_shahi/dissertation/model/unet.h5'
(train_dataset, valid_dataset), (train_steps, valid_steps) = get_data(batch_size, False)
model.compile(
loss=dice_loss,
optimizer=tf.keras.optimizers.Adam(lr),
metrics=[
dice_coef,
mad,
tf.keras.metrics.MeanSquaredError(),
tf.keras.metrics.MeanIoU(num_classes=2)
]
)
model.fit(
train_dataset,
validation_data=valid_dataset,
epochs=epochs,
steps_per_epoch=train_steps,
validation_steps=valid_steps,
callbacks=[
ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-7, verbose=1),
EarlyStopping(monitor='val_loss', patience=10),
CSVLogger(csv_path),
ModelCheckpoint(model_path, verbose=1, monitor='val_loss', save_best_only=True, mode='auto')
])
call_model()