-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_input.py
292 lines (253 loc) · 9.87 KB
/
process_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import numpy as np
import sys, os
import tskit, msprime
# recapitation
def recap(fp, op, seed=123):
# load
ts = tskit.load(fp)
alive_inds = []
for i in ts.individuals():
alive_inds.append(i.id)
# (unindent)
Ne = len(alive_inds)
# simplify to get rid of extraneous populations
ts = ts.simplify(keep_input_roots=True)
# recap
np.random.seed(seed)
pop_id = None
for p in ts.populations():
if p.metadata != None:
slimid = p.metadata['slim_id']
if slimid == 1: # CHANGE: either 0 or 1, depending on which of your slim recipes you used
pop_id = int(p.id)
if pop_id == None:
print("need to find the correct population ID",flush=True)
exit()
demography = msprime.Demography.from_tree_sequence(ts)
demography[pop_id].initial_size = Ne
ts = msprime.sim_ancestry(
initial_state=ts,
demography=demography,
recombination_rate=1e-8,
random_seed=seed,
)
# dump
ts.dump(op)
return
# convert vcf to genotype array
# filters:
# 1. biallelic change the alelles to 0 and 1 before inputting.
# 2. no missing data: filter or impute.
# 3. ideally no sex chromosomes, and only look at one sex at a time.
def vcf2genos(vcf_path, n, num_snps, phase):
geno_mat = []
vcf = open(vcf_path, "r")
current_chrom = None
for line in vcf:
if line[0:2] == "##":
pass
elif line[0] == "#":
header = line.strip().split("\t")
if n == None: # option for getting sample size from vcf
n = len(header)-9
else:
newline = line.strip().split("\t")
genos = []
for field in range(9, len(newline)):
geno = newline[field].split(":")[0].split("/")
geno = [int(geno[0]), int(geno[1])]
if phase == 1:
genos.append(sum(geno))
elif phase == 2:
genos.append(geno[0])
genos.append(geno[1])
else:
print("problem")
exit()
for i in range((n * phase) - len(genos)): # pad with 0s
genos.append(0)
geno_mat.append(genos)
# check if enough snps
if len(geno_mat) < num_snps:
print("not enough snps")
exit()
if len(geno_mat[0]) < (n * phase):
print("not enough samples")
exit()
# sample snps
geno_mat = np.array(geno_mat)
geno_mat = geno_mat[np.random.choice(geno_mat.shape[0], num_snps, replace=False), :]
return geno_mat
# calculate isolation by distance
def ibd(genos, coords, phase, num_snps):
# subset for n samples (avoiding padding-zeros)
n = 0
for i in range(genos.shape[1]):
reverse_index = genos.shape[1]-i-1
if len(set(genos[:, reverse_index])) > 1:
n += reverse_index
break
n += 1 # for 0 indexing
if phase == 2:
n = int(n/2)
genos = genos[:, 0:n*phase]
# if collapsed genos, make fake haplotypes for calculating Rousset's statistic
if phase == 1:
geno_mat2 = []
for i in range(genos.shape[1]):
geno1, geno2 = [], []
for s in range(genos.shape[0]):
combined_geno = genos[s, i]
if combined_geno == 0.0:
geno1.append(0)
geno2.append(0)
elif combined_geno == 2:
geno1.append(1)
geno2.append(1)
elif combined_geno == 1:
alleles = [0, 1]
# assign random allele to each haplotype
geno1.append(alleles.pop(random.choice([0, 1])))
geno2.append(alleles[0])
else:
print("bug", combined_geno)
exit()
geno_mat2.append(geno1)
geno_mat2.append(geno2)
geno_mat2 = np.array(geno_mat2)
genos = geno_mat2.T
# denominator for "a"
locus_specific_denominators = np.zeros((num_snps))
P = (n*(n-1))/2 # number of pairwise comparisons
for i1 in range(0, n-1):
X11 = genos[:, i1*2]
X12 = genos[:, i1*2+1]
X1_ave = (X11+X12)/2 # average allelic does within individual-i
for i2 in range(i1+1, n):
X21 = genos[:, i2*2]
X22 = genos[:, i2*2+1]
X2_ave = (X21+X22)/2
#
SSw = (X11-X1_ave)**2 + (X12-X1_ave)**2 + \
(X21-X2_ave)**2 + (X22-X2_ave)**2
locus_specific_denominators += SSw
locus_specific_denominators = locus_specific_denominators / (2*P)
denominator = np.sum(locus_specific_denominators)
# numerator for "a"
gendists = []
for i1 in range(0, n-1):
X11 = genos[:, i1*2]
X12 = genos[:, i1*2+1]
X1_ave = (X11+X12)/2 # average allelic does within individual-i
for i2 in range(i1+1, n):
X21 = genos[:, i2*2]
X22 = genos[:, i2*2+1]
X2_ave = (X21+X22)/2
#
SSw = (X11-X1_ave)**2 + (X12-X1_ave)**2 + \
(X21-X2_ave)**2 + (X22-X2_ave)**2
Xdotdot = (X11+X12+X21+X22)/4 # average allelic dose for the pair
# a measure of between indiv
SSb = (X1_ave-Xdotdot)**2 + (X2_ave-Xdotdot)**2
locus_specific_numerators = ((2*SSb)-SSw) / 4
numerator = np.sum(locus_specific_numerators)
a = numerator/denominator
gendists.append(a)
# geographic distance
geodists = []
for i in range(0, n-1):
for j in range(i+1, n):
d = distance.distance(coords[i, :], coords[j, :]).km
d = np.log(d)
geodists.append(d)
# regression
from scipy import stats
geodists = np.array(geodists)
gendists = np.array(gendists)
b = stats.linregress(geodists, gendists)[0]
r = stats.pearsonr(geodists, gendists)[0]
r2 = r**2
Nw = (1 / b)
print("IBD r^2, slope, Nw:", r2, b, Nw)
# performs sampling with weights according to the frequency of distances in the sample
def weighted_sample_dists(locs,loc_range,n,pairs,num_bins):
# get dists
dists = []
locs = locs.T
for i in range(n-1):
for j in range(i+1,n):
d = np.linalg.norm(locs[i,:] - locs[j,:])
dists.append(d)
# counts bins
bins = []
max_dist = (loc_range**2 + loc_range**2)**(0.5)
bin_size = float(max_dist) / float(num_bins)
for i in range(num_bins):
new_count = 0
start = bin_size*i
end = bin_size*(i+1)
for d in dists:
if d >= start and d < end:
new_count += 1
bins.append(new_count)
# get props for bins
props = []
all_pairs = int((float(n)*(float(n)-1))/2)
for i in range(num_bins):
p = 1 - float(bins[i]) / all_pairs # invert
props.append(p)
# assign props to pairs
weights = []
for d in dists:
for i in range(num_bins):
start = bin_size*i
end = bin_size*(i+1)
if d >= start and d < end:
weights.append(props[i])
# normalize
weights = np.array(weights)
total =np.sum(weights)
weights /= total
# finally, sample
sample = np.random.choice(np.arange(all_pairs), size=pairs, replace=False, p=weights)
return sample
def grid_density(slim_output,grid_coarseness):
# read data
with open(slim_output) as infile:
De = np.array(list(map(float,infile.readline().strip().split())))
sigmas = np.array(list(map(float,infile.readline().strip().split())))
# make map shape
De = np.reshape(De, (int(grid_coarseness),int(grid_coarseness)))
sigmas = np.reshape(sigmas, (int(grid_coarseness),int(grid_coarseness)))
counts = np.stack([sigmas,De],axis=2)
np.save('temp1NEW',counts)
return counts
# convert locations from geographic coordinates to row and column positions in a 2d array
#
# What are the locs, exactly? (updated 12.13.23)
# 1. We start with a randomly generated map array
# 2. If habitat PNG, arrange top left pointing northwest. Load PNG (PIL.Image.open()), mask map pixel 0,0 with habitat pixel 0,0.
# 3. Load into SLiM (readCSV().asMatrix()), and it's already oriented the way we want in GUI with topleft pointing northwest.
# 4. In terms of array (row,col) indices, pixel 0,0 is topleft; pixel 0,50 is topright, etc. (np.asarray(Image.open()))
# 5. Individual locs from SLiM use cartesian coordinates: bottom left 0,0, top left 0,W, etc (p1.individuals.spatialPosition)
# 6. Convert x,y to array indices: (i) reverse first dim (W-i), and then (ii) swap the first and second dim (i,j=j,i).
def coords2array(locs, w):
new_locs = np.array(locs)
new_locs[0,:] = w - new_locs[0,:] # flip first dimension (to match PNG)
new_locs = np.flip(new_locs, axis=0) # swap x and y (to match PNG indices)
return new_locs
# main
def main():
vcf_path = sys.argv[1]
n = sys.argv[2]
if n == "None":
n = None
else:
n = int(n)
num_snps = int(sys.argv[3])
outname = sys.argv[4]
phase = int(sys.argv[5])
geno_mat = vcf2genos(vcf_path, n, num_snps, phase)
np.save(outname + ".genos", geno_mat)
if __name__ == "__main__":
main()