forked from ernestyalumni/Gravite
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathlecture15.tex
141 lines (107 loc) · 6.44 KB
/
lecture15.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
\section{Einstein gravity}
Recall that in Newtonian spacetime, we were able to reformulate the Poisson law $\Delta \phi = 4\pi G_N \rho$ in terms of the Newtonian spacetime curvature as
\[
R_{00} = 4\pi G_N \rho
\]
$R_{00}$ with respect to $\nabla_{\text{Newton}}$, and $G_N = $ Newtonian gravitational constant.
This prompted Einstein to postulate that the relativistic field equations for the Lorentzian metric $g$ of (relativistic) spacetime
\[
R_{ab} = 8\pi G_N T_{ab}
\]
However, this equation suffers from a problem. We know from matter theory that in RHS, $(\nabla_a T)^{ab} = 0$ since this has been formulated from an action. But in LHS, $(\nabla_a R)^{ab} \neq 0$ generically. Einstein tried to argue this problem away. Nevertheless, the equations cannot be upheld.
\subsection{Hilbert}
Hilbert was a specialist for variational principles. To find the appropriate LHS of the gravitational field equations, Hilbert suggested to start from an action
\[
S_{\text{Hilbert}}[g] = \int_M \sqrt{-g} R_{ab} g^{ab}
\]
which, in a sense, is formulated in terms of ``simplest action''. \\
\underline{Aim}: varying this w.r.t. metric $g_{ab}$ will result in some tensor $G^{ab}$.
\subsection{Variation of $S_{\text{Hilbert}}$}
\begin{align*}
0 \overset{!}{=} \underbrace{\delta}_{g_i} S_{\text{Hilbert}}[g] = \int_M [ \underbrace{\delta \sqrt{-g} }_{1} \, g^{ab}R_{ab} + \sqrt{-g} \, \underbrace{\delta g^{ab}}_{2} R_{ab} + \sqrt{-g} \, g^{ab} \underbrace{\delta R_{ab}}_{3} ]
\end{align*}
ad 1: $\delta \sqrt{-g} = \frac{- (\text{det}g)g^{mn} \delta g_{mn}}{2 \sqrt{-g}} = \frac{1}{2} \sqrt{-g} g^{mn} \delta g_{mn}$ \\
the above comes from $\delta \text{det}(g) = \text{det}(g) g^{mn} \delta g_{mn} \text{ e.g. from } \text{det}(g) = \exp{\text{tr}{\ln{g}}}$
ad 2: $g^{ab}g_{bc} = \delta^a_c \implies (\delta g^{ab})g_{bc} + g^{ab}(\delta g_{bc}) = 0 \implies \delta g^{ab} = -g^{am} g^{bn} \delta g_{mn}$
ad 3: \begin{align*}
\Delta R_{ab} & \underbrace{=}_{\text{normal coords at point}} \delta \partial_b \ccf{m}{am} - \delta \partial_m \ccf{m}{ab} + \Gamma \Gamma - \Gamma \Gamma \\
& = \partial_b \delta \ccf{m}{am} - \partial_m \delta \ccf{m}{ab} = \nabla_b (\delta \Gamma)\indices{^{m}_{am}} - \nabla_m (\delta \Gamma)\indices{^{m}_{ab}} \\
& \implies \sqrt{-g} g^{ab} \delta R_{ab} = \sqrt{-g}
\end{align*}
``if you formulate the variation properly, you'll see the variation $\delta$ commute with $\partial _b$''
%EY : 20150408 I think one uses the integration at the bounds, integration by parts trick
$\ccfx{i}{jk}{(x)} - \widetilde{\Gamma_{(x)}}\indices{^i_{jk}}$ are the components of a $(1,2)$-tensor. \\
Let us use the notation: $(\nabla_b A)\indices{^i_j} =: A\indices{^i_{j;b}}$
\[
\therefore \sqrt{-g} g^{ab} \delta R_{ab} \underbrace{=}_{ \nabla g = 0 } \sqrt{-g} (g^{ab} \delta \ccf{m}{am})_{;b} - \sqrt{-g} (g^{ab} \delta \ccf{m}{ab})_{ ; m} = \sqrt{-g} \, A\indices{^b_{;b}} - \sqrt{-g} \, B\indices{^m_{, m}}
\]
Question: Why is the difference of coefficients a tensor?
Answer:
\begin{align*}
\ccfx{i}{jk}{(y)} = \cibasis[y^i]{x^m} \cibasis[x^m]{y^j} \cibasis[x^q]{y^k} \ccfx{m}{nq}{(x)} + \cibasis[y^i]{x^m} \frac{ \partial^2 x^m}{ \partial y^j \partial y^k}
\end{align*}
Collecting terms, one obtains
\begin{align*}
0 & \overset{!}{=} \delta S_{\text{Hilbert}} = \int_M [ \frac{1}{2} \sqrt{-g} \, g^{mn} \delta g_{mn} g^{ab} R_{ab} - \sqrt{-g} \, g^{am} g^{bn} \delta g_{mn} R_{ab} + \underbrace{(\sqrt{-g} \, A^a)_{ \, , a} }_{\text{surface}} - \underbrace{(\sqrt{-g} \, B^b)_{ \, , b }}_{\text{surface term}}] \\
& = \int_M \sqrt{-g} \, \delta \underbrace{g_{mn}}_{\text{arbitrary variation}} [\frac{1}{2} g^{mn} R - R^{mn}] \implies G^{mn} = R^{mn} - \frac{1}{2} g^{mn} R
\end{align*}
Hence Hilbert, from this ``mathematical'' argument, concluded that one may take
\[
\boxed{ R_{ab} - \frac{1}{2} g_{ab} R = 8 \pi G_N T_{ab} } \\
\]
Einstein equations
\[
S_{E-H}[g] = \int_M \sqrt{-g} \, R
\]
\subsection{Solution of the $\nabla_a T^{ab} =0$ issue}
One can show ($\to$ Tutorials) that the \underline{Einstein curvature}
\[
G_{ab} = R_{ab} - \frac{1}{2} g_{ab}R
\]
satisfy the so-called \underline{contracted differential Bianchi identity} $(\nabla_a G)^{ab} = 0$.
\subsection{Variants of the field equations}
\begin{enumerate}[(a)]
\item a simple rewriting:
\begin{align*}
& R_{ab} - \frac{1}{2} g_{ab} R = 8 \pi G_N T_{ab} = T_{ab} && (G_N = \frac{1}{8\pi}) \\
& R_{ab} - \frac{1}{2} g_{ab} R = T_{ab} \, || \, g^{ab} && (\text{contract on both sides with } g^{ab}) \\
& R - 2R = T := T_{ab}g^{ab} \\
\implies & R = -T \\
\implies & R_{ab} + \frac{1}{2} g_{ab} T = T_{ab} \\
\Longleftrightarrow & R_{ab} = (T_{ab} - \frac{1}{2} Tg_{ab}) =: \widehat{T}_{ab} \\
\therefore \quad & \boxed{ R_{ab} = \widehat{T}_{ab}}
\end{align*}
\item $S_{E-H}[g] := \int_M \sqrt{-g} (R+ 2\Lambda)$ \quad \quad ($\Lambda$ is called cosmological constant)
\underline{History:} \\
1915: $\Lambda < 0$ (Einstein) in order to get a non-expanding universe \\
$>$1915: $\Lambda = 0$ (Hubble) \\
today: $\Lambda > 0$ to account for an accelerated expansion \\
$\Lambda \neq 0$ can be interpreted as a contribution $-\frac{1}{2} \Lambda g$ to the energy-momentum of matter in spacetime. This energy, which does not interact with anything but contributes to the curvature is called ``dark energy''.
Question: surface terms scalar?
Answer: for a careful treatment of the surface terms which we discarded, see, e.g. E. Poisson, ``A relativist's toolkit'' C.U.P. ``excellent book''
Question: What is a constant on a manifold? \\
Answer: $\int \sqrt{-g} \, \Lambda = \Lambda \int \sqrt{-g} \, 1$
[back to dark energy]
[Weinberg used QCD to calculate $\Lambda$ using the idea that $\Lambda$ could arise as the vacuum energy of the standard model fields. It turns out that \\
$\Lambda_{\text{calculated}} = 10^{120} \times \Lambda_{\text{obs}}$ \\
which is called the ``worst prediction of physics''.
\underline{Tutorials}: \underline{check that }
\begin{itemize}
\item Schwarzscheld metric (1916)
\item FRW metric
\item pp-wave metric
\item Reisner-Nordstrom
\end{itemize}
$\Longrightarrow $ are solutions to Einstein's equations
\end{enumerate}
in high school
$m\ddot{x} + m\omega^2 x^2=0$
$x(t) = \cos{(\omega t)}$
\underline{ET}: [elementary tutorials]
study motion of particles \& observers in Schwarzschild S.T.
\underline{Satellite lectures}: \\
Marcus C. Werner: Gravitational lensing
odd number of pictures Morse theory (EY:20150408 Morse Theory !!!)
Domenico Giulini: Canonical Formulations of GR
Hamiltonian form
Key to Quantum Gravity