forked from slee-lab/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathchat_completion.py
142 lines (124 loc) · 6.05 KB
/
chat_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import fire
import torch
import os
import sys
import warnings
from typing import List
from peft import PeftModel, PeftConfig
from transformers import LlamaConfig, LlamaTokenizer, LlamaForCausalLM
from safety_utils import get_safety_checker
from model_utils import load_model, load_peft_model
from chat_utils import read_dialogs_from_file, format_tokens
def main(
model_name,
peft_model: str=None,
quantization: bool=False,
max_new_tokens =256, #The maximum numbers of tokens to generate
min_new_tokens:int=0, #The minimum numbers of tokens to generate
prompt_file: str=None,
seed: int=42, #seed value for reproducibility
safety_score_threshold: float=0.5,
do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
**kwargs
):
if prompt_file is not None:
assert os.path.exists(
prompt_file
), f"Provided Prompt file does not exist {prompt_file}"
dialogs= read_dialogs_from_file(prompt_file)
elif not sys.stdin.isatty():
dialogs = "\n".join(sys.stdin.readlines())
else:
print("No user prompt provided. Exiting.")
sys.exit(1)
print(f"User dialogs:\n{dialogs}")
print("\n==================================\n")
# Set the seeds for reproducibility
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
model = load_model(model_name, quantization)
if peft_model:
model = load_peft_model(model, peft_model)
if use_fast_kernels:
"""
Setting 'use_fast_kernels' will enable
using of Flash Attention or Xformer memory-efficient kernels
based on the hardware being used. This would speed up inference when used for batched inputs.
"""
try:
from optimum.bettertransformer import BetterTransformer
model = BetterTransformer.transform(model)
except ImportError:
print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
tokenizer = LlamaTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens(
{
"pad_token": "<PAD>",
}
)
chats = format_tokens(dialogs, tokenizer)
with torch.no_grad():
for idx, chat in enumerate(chats):
safety_checker = get_safety_checker(enable_azure_content_safety,
enable_sensitive_topics,
enable_saleforce_content_safety,
)
# Safety check of the user prompt
safety_results = [check(dialogs[idx][0]["content"]) for check in safety_checker]
are_safe = all([r[1] for r in safety_results])
if are_safe:
print(f"User prompt deemed safe.")
print("User prompt:\n", dialogs[idx][0]["content"])
print("\n==================================\n")
else:
print("User prompt deemed unsafe.")
for method, is_safe, report in safety_results:
if not is_safe:
print(method)
print(report)
print("Skipping the inferece as the prompt is not safe.")
sys.exit(1) # Exit the program with an error status
tokens= torch.tensor(chat).long()
tokens= tokens.unsqueeze(0)
tokens= tokens.to("cuda:0")
outputs = model.generate(
tokens,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
use_cache=use_cache,
top_k=top_k,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
**kwargs
)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Safety check of the model output
safety_results = [check(output_text) for check in safety_checker]
are_safe = all([r[1] for r in safety_results])
if are_safe:
print("User input and model output deemed safe.")
print(f"Model output:\n{output_text}")
print("\n==================================\n")
else:
print("Model output deemed unsafe.")
for method, is_safe, report in safety_results:
if not is_safe:
print(method)
print(report)
if __name__ == "__main__":
fire.Fire(main)