forked from slee-lab/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathllama_finetuning.py
266 lines (237 loc) · 9.54 KB
/
llama_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
import fire
import torch
import torch.distributed as dist
import torch.optim as optim
from peft import get_peft_model, prepare_model_for_int8_training
from pkg_resources import packaging
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
)
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DistributedSampler
from transformers import (
LlamaForCausalLM,
LlamaTokenizer,
LlamaConfig,
default_data_collator,
)
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
import policies
from configs import fsdp_config, train_config
from policies import AnyPrecisionAdamW
from utils import fsdp_auto_wrap_policy
from utils.config_utils import (
update_config,
generate_peft_config,
generate_dataset_config,
)
from utils.dataset_utils import get_preprocessed_dataset
from utils.train_utils import (
train,
freeze_transformer_layers,
setup,
setup_environ_flags,
clear_gpu_cache,
print_model_size,
get_policies
)
import os
os.environ['PYTORCH_CUDA_ALLOC_CONF']='expandable_segments:True'
def main(**kwargs):
# Update the configuration for the training and sharding process
update_config((train_config, fsdp_config), **kwargs)
# Set the seeds for reproducibility
torch.cuda.manual_seed(train_config.seed)
torch.manual_seed(train_config.seed)
if not os.path.exists(train_config.output_dir):
print("mkdir...",str(train_config.output_dir))
os.makedirs(train_config.output_dir)
if train_config.enable_fsdp:
setup()
# torchrun specific
local_rank = int(os.environ["LOCAL_RANK"])
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
if torch.distributed.is_initialized():
torch.cuda.set_device(local_rank)
clear_gpu_cache(local_rank)
setup_environ_flags(rank)
# Calculate gradient accumulation steps
gradient_accumulation_steps = train_config.batch_size_training // train_config.micro_batch_size
# Load the pre-trained model and setup its configuration
if train_config.enable_fsdp and train_config.low_cpu_fsdp:
"""
for FSDP, we can save cpu memory by loading pretrained model on rank0 only.
this avoids cpu oom when loading large models like llama 70B, in which case
model alone would consume 2+TB cpu mem (70 * 4 * 8). This will add some comms
overhead and currently requires latest nightly.
"""
v = packaging.version.parse(torch.__version__)
verify_latest_nightly = v.is_devrelease and v.dev >= 20230701
if not verify_latest_nightly:
raise Exception("latest pytorch nightly build is required to run with low_cpu_fsdp config, "
"please install latest nightly.")
if rank == 0:
model = LlamaForCausalLM.from_pretrained(
train_config.model_name,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
)
else:
llama_config = LlamaConfig.from_pretrained(train_config.model_name)
with torch.device("meta"):
model = LlamaForCausalLM(llama_config)
else:
model = LlamaForCausalLM.from_pretrained(
train_config.model_name,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
)
if train_config.enable_fsdp and train_config.use_fast_kernels:
"""
For FSDP and FSDP+PEFT, setting 'use_fast_kernels' will enable
using of Flash Attention or Xformer memory-efficient kernels
based on the hardware being used. This would speed up fine-tuning.
"""
try:
from optimum.bettertransformer import BetterTransformer
model = BetterTransformer.transform(model)
except ImportError:
print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
print_model_size(model, train_config, rank if train_config.enable_fsdp else 0)
# Prepare the model for int8 training if quantization is enabled
if train_config.quantization:
model = prepare_model_for_int8_training(model)
# Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
if train_config.enable_fsdp and fsdp_config.pure_bf16:
model.to(torch.bfloat16)
# Load the tokenizer and add special tokens
tokenizer = LlamaTokenizer.from_pretrained(train_config.model_name)
tokenizer.add_special_tokens(
{
"pad_token": "<PAD>",
}
)
if train_config.use_peft:
peft_config = generate_peft_config(train_config, kwargs)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
#setting up FSDP if enable_fsdp is enabled
if train_config.enable_fsdp:
if not train_config.use_peft and train_config.freeze_layers:
freeze_transformer_layers(train_config.num_freeze_layers)
mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank)
my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, LlamaDecoderLayer)
model = FSDP(
model,
auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
sharding_strategy=fsdp_config.sharding_strategy,
device_id=torch.cuda.current_device(),
limit_all_gathers=True,
sync_module_states=train_config.low_cpu_fsdp,
param_init_fn=lambda module: module.to_empty(device=torch.device("cuda"), recurse=False)
if train_config.low_cpu_fsdp and rank != 0 else None,
)
if fsdp_config.fsdp_activation_checkpointing:
policies.apply_fsdp_checkpointing(model)
elif not train_config.quantization and not train_config.enable_fsdp:
model.to("cuda")
dataset_config = generate_dataset_config(train_config, kwargs)
# Load and preprocess the dataset for training and validation
dataset_train = get_preprocessed_dataset(
tokenizer,
dataset_config,
split="train",
)
if not train_config.enable_fsdp or rank == 0:
print(f"--> Training Set Length = {len(dataset_train)}")
dataset_val = get_preprocessed_dataset(
tokenizer,
dataset_config,
split="test",
)
if not train_config.enable_fsdp or rank == 0:
print(f"--> Validation Set Length = {len(dataset_val)}")
train_sampler = None
val_sampler = None
if train_config.enable_fsdp:
train_sampler = DistributedSampler(
dataset_train,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
shuffle=True,
)
if train_config.run_validation:
val_sampler = DistributedSampler(
dataset_val,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
# Create DataLoaders for the training and validation dataset
train_dataloader = torch.utils.data.DataLoader(
dataset_train,
batch_size=train_config.batch_size_training,
num_workers=train_config.num_workers_dataloader,
pin_memory=True,
sampler=train_sampler if train_sampler else None,
drop_last=True,
collate_fn=default_data_collator,
)
if train_config.run_validation:
eval_dataloader = torch.utils.data.DataLoader(
dataset_val,
batch_size=train_config.val_batch_size,
num_workers=train_config.num_workers_dataloader,
pin_memory=True,
sampler=val_sampler if val_sampler else None,
drop_last=True,
collate_fn=default_data_collator,
)
else:
eval_dataloader = torch.utils.data.DataLoader(
dataset_val,
batch_size=train_config.val_batch_size,
num_workers=train_config.num_workers_dataloader,
pin_memory=True,
sampler=val_sampler if val_sampler else None,
drop_last=True,
collate_fn=default_data_collator,
)
# Initialize the optimizer and learning rate scheduler
if fsdp_config.pure_bf16 and fsdp_config.optimizer == "anyprecision":
optimizer = AnyPrecisionAdamW(
model.parameters(),
lr=train_config.lr,
momentum_dtype=torch.bfloat16,
variance_dtype=torch.bfloat16,
use_kahan_summation=False,
)
else:
optimizer = optim.AdamW(
model.parameters(),
lr=train_config.lr,
weight_decay=0.0,
)
scheduler = StepLR(optimizer, step_size=1, gamma=train_config.gamma)
# Start the training process
results = train(
model,
train_dataloader,
eval_dataloader,
tokenizer,
optimizer,
scheduler,
gradient_accumulation_steps,
train_config,
fsdp_config if train_config.enable_fsdp else None,
local_rank if train_config.enable_fsdp else None,
rank if train_config.enable_fsdp else None,
)
if not train_config.enable_fsdp or rank==0:
[print(f'Key: {k}, Value: {v}') for k, v in results.items()]
if __name__ == "__main__":
fire.Fire(main)