-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNtest.py
66 lines (53 loc) · 1.94 KB
/
NNtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from dataSetCreator import FeatureDataset
import torch.optim as optim
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(5, 512),
nn.ReLU(),
nn.Linear(512, 2),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
feature_set = FeatureDataset('5_Saccades_lucy1.csv', 2, 2)
train_loader = torch.utils.data.DataLoader(feature_set, batch_size=10, shuffle=True)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, torch.max(labels,1)[1])
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# X = torch.rand(1, 50, 1, device=device)
# logits = model(X)
# pred_probab = nn.Softmax(dim=1)(logits)
# y_pred = pred_probab.argmax(1)
# print(f"Predicted class: {y_pred}")